博碩士論文 105226058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.216.79.60
姓名 胡嘉貫(WU KA KUN)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於鬼影成像之光聲顯微鏡
(Photoacoustic Microscopy Using Ghost Image Reconstruction)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本研究利用計算式鬼影成像中的壓縮感知理論及鬼影成像系統,結合光聲顯微鏡架構,組建出光聲鬼影顯微成像架構。並利用碳纖維作為樣品還原其光聲影像來驗證光聲鬼影顯微成像系統。
本實驗系統以1064 nm近紅外雷射光源,通過無聚焦系統放大光斑後投影在數位微鏡陣列上,以反射雷射光經過顯微鏡成像在物體表面上,接收產生的光聲訊號並透過壓縮感知理論的Dantzig selector演算法來還原物體的光聲影像。當中系統在Y方向上的點擴散函數半高全寬為3.35 um,X方向上半高全寬為2.78 um,成像系統可解析影像深度約3 um,還原範圍長約101.9 um和寬約64.39 um (共2880像素),在取樣圖案數除基底總數0.22 (660次),便能還原碳纖維的光聲影像,訊號區域平均訊號和非訊號區域平均訊號的比值在2.3以上,而其還原影像理想時間約38秒。
摘要(英) Abstract
This research is using the Compressive Sensing theory(CS theory) and Ghost Imaging system(GI system), combine with Photoacoustic microscopy system(PAM system) to build up as CS-GI-PAM system. Using the Carbon fiber as sample to reconstruct its Photoacoustic image to verify CS-GI-PAM system.
In this study, the Pulse laser, which wavelength is 1064nm, through the afocal system to expend laser beam and project on digital micromirror device. Utilize DMD to reflect laser power distribution and image it on the sample surface, to generate photoacoustic signal and receive signal to resconstruct image. The system Y direction point spread function’s(PSF) full width at half maximum(FWHM) is 3.35 um, X direction PSF’s FWHM is 2.78 um, system imaging depth less than 3 um. The area of the image is 101.9 x 64.39 um(total pixel is 2880). The CS-GI-PAM system can use the fraction of total basis of sampling pattern ratio 0.23(660 pattern) to reconstruct the carbon fiber photoacoustic image and the signal part ratio can higher than 2.3, the rescontruct time costs about 38s.
關鍵字(中) ★ 光聲效應
★ 壓縮感知
★ 影像辨識
★ 光聲鬼影顯微成像系統
★ 凸優化演算法
關鍵字(英) ★ Photoacoustic effect
★ Compressive Sensing Theory
★ Image process
★ Ghost Imaging system
★ CS-GI-PAM
★ convex optimization program
論文目次 目錄
中文摘要 IV
Abstract V
致謝 VI
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2研究動機 4
1-3論文架構 5
第二章 理論背景 6
2-1 光聲效應原理及機制 6
2-1-1 熱膨脹光致聲波產生 7
2-2 掃描式光聲顯微鏡系統 10
2-3鬼影成像 12
2-3-1 鬼影成像背景及理論 12
2-3-2 壓縮感知 14
2-3-3 光聲鬼影成像系統及還原概念 17
2-4 訊號和影像處理 21
2-4-1 訊號訊雜比 21
2-4-2 訊號平均 22
2-4-3 還原影像平均訊號比 23
2-4-4 相關係數 24
第三章 光聲鬼影成像還原模擬 25
3-1 權重受量測錯誤影響的還原影像模擬 25
3-1-1 隨不同取樣圖案數的模擬影像還原 31
3-1-2 不同亂數圖案稀疏性之還原影像 37
3-1-3不同誤差影響下還原影像 40
第四章 光聲鬼影成像實驗架構及步驟 43
4-1 實驗架構及系統和設定 43
4-1-1 光學及聲學系統 43
4-1-2 電子及訊號系統 50
4-1-3 數位微鏡陣列設定及程序控制 52
4-1-4 壓縮感知還原影像程式設定 57
4-2 實驗樣品 58
4-2-1 碳纖維 58
4-3 實驗前置準備及步驟 60
4-3-1 實驗前置準備及說明 60
4-3-2 實驗操作步驟 62
第五章 實驗結果之分析與討論 64
5-1 碳纖維光聲鬼影成像實驗結果 64
5-1-1 不同取樣使用圖案數下的光聲鬼影成像還原 65
5-1-2 不同稀疏性亂數圖案分佈的光聲鬼影成像還原 69
5-1-3 還原交叉相疊的碳纖維影像解析成像系統景深 73
5-1-4 成像系統之PSFs 79
5-1-5 不同光強分佈(不同系統)的碳纖維還原數據 84
5-1-6 還原影像時間說明 86
第六章 結論與未來展望 88
6-1結論 88
6-2未來展望 90
參考文獻 91
附錄 94
附錄一 Matlab亂數圖案生成程式 94
附錄二 Labview控制程式 99
附錄三 Matlab還原影像程式 104
附錄四 Matlab模擬部份還原影像程式 112
附錄五 更高稀疏性還原影像 121
附錄六 樣品鋅金屬片 122
附錄七 鋅金屬邊緣光聲鬼影成像實驗結果 123
附錄八 還原人工皮底下碳纖維影像 127
參考文獻 參考文獻
1. A. G. Bell, "On the production and reproduction of sound by light," in Proc. Am. Assoc. Adv. Sci.(1881), pp. 115-136.
2. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, "Laser-scanning optical-resolution photoacoustic microscopy," Optics letters 34, 1771-1773 (2009).
3. W. Qin, T. Jin, H. Guo, and L. Xi, "Large-field-of-view optical resolution photoacoustic microscopy," Optics express 26, 4271-4278 (2018).
4. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, "Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner," Scientific reports 5, 7932 (2015).
5. S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, "Review on practical photoacoustic microscopy," Photoacoustics, 100141 (2019).
6. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE transactions on medical imaging 24, 436-440 (2005).
7. T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Physical Review A 52, R3429 (1995).
8. Y. Bromberg, O. Katz, and Y. Silberberg, "Ghost imaging with a single detector," Physical Review A 79, 053840 (2009).
9. O. Katz, Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," Applied Physics Letters 95, 131110 (2009).
10. M. W. Sigrist, "Laser generation of acoustic waves in liquids and gases," Journal of applied physics 60, R83-R122 (1986).
11. Y.-S. Chen, D. Yeager, and S. Y. Emelianov, "Photoacoustic Imaging for Cancer Diagnosis and Therapy Guidance," in Cancer Theranostics(Elsevier, 2014), pp. 139-158.
12. J. H. Shapiro, "Computational ghost imaging," Physical Review A 78, 061802 (2008).
13. E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on information theory 52, 489-509 (2006).
14. E. J. Candès, and M. B. Wakin, "An introduction to compressive sampling," IEEE signal processing magazine 25, 21-30 (2008).
15. R. G. Baraniuk, "Compressive sensing [lecture notes]," IEEE signal processing magazine 24, 118-121 (2007).
16. E. J. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes rendus mathematique 346, 589-592 (2008).
17. M. Rani, S. Dhok, and R. Deshmukh, "A systematic review of compressive sensing: Concepts, implementations and applications," IEEE Access 6, 4875-4894 (2018).
18. E. J. Candes, and J. Romberg, "Quantitative robust uncertainty principles and optimally sparse decompositions," Foundations of Computational Mathematics 6, 227-254 (2006).
19. E. Candes, and T. Tao, "Decoding by linear programming," arXiv preprint math/0502327 (2005).
20. E. Candes, and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse problems 23, 969 (2007).
21. L. Zhang, B. Tang, F. Wang, L. Sun, and X. Ma, "On the Characteristics of Photoacoustic Imaging Based on the Algorithm of Computational Ghost Imaging," Lasers in Engineering (Old City Publishing) 25 (2013).
22. L.-Z. Li, X.-R. Yao, X.-F. Liu, W.-K. Yu, and G.-J. Zhai, "Super-resolution ghost imaging via compressed sensing," (2014).
23. S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization (Cambridge university press, 2004).
24. E. J. Candes, and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE transactions on information theory 52, 5406-5425 (2006).
25. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM review 43, 129-159 (2001).
26. E. J. Candes, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 59, 1207-1223 (2006).
27. E. Candes, and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," The annals of Statistics 35, 2313-2351 (2007).
28. K. Najarian, and R. Splinter, Biomedical signal and image processing (CRC press, 2005).
29. K. W. Busch, and M. A. Busch, Chiral analysis (Elsevier, 2011).
30. N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics 9, 62-66 (1979).
31. J. Lee Rodgers, and W. A. Nicewander, "Thirteen ways to look at the correlation coefficient," The American Statistician 42, 59-66 (1988).
32. J. Romberg, "L1 magic," https://statweb.stanford.edu/~candes/software/l1magic/
(accessed 03/31, 2020).
33. E. Candes, and J. Romberg, "l1-magic: Recovery of sparse signals via convex programming," URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf 4, 14 (2005).
34. R. Berinde, and P. Indyk, "Sparse recovery using sparse random matrices," preprint (2008).
35. H. Wang, Q. Yan, B. Li, C. Yuan, and Y. Wang, "Measurement Matrix Construction for Large-area Single Photon Compressive Imaging," Sensors 19, 474 (2019).
36. K. Wu, and X. Guo, "Compressive sensing with sparse measurement matrices," in 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring)(IEEE2011), pp. 1-5.
37. "DLP4500NIR .45 WXGA Near-Infrared DMD Data Sheet," (Texas Instruments ).
38. K. Elliott, "Keynote Flexlight LC4500-RGB-EKT Electronics Kit User’s Guide," (Copyright © 2016 Keynote Photonics, 06/14/2016).
39. S. Gibson, "simple compressed sensing example," https://www.mathworks.com/matlabcentral/fileexchange/41792-simple-compressed-sensing-example. (accessed 04/22, 2020).
40. "TAIRYFIL Carbon Fiber Data Sheet," http://www.fpc.com.tw/fpcwuploads/pdocument/pdocument_141202152438.pdf. (accessed 05/30, 2020).
41. A. M. Caravaca-Aguirre, S. Singh, S. Labouesse, M. V. Baratta, R. Piestun, and E. Bossy, "Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination," APL Photonics 4, 096103 (2019).
指導教授 鍾德元(Te-yuan Chung) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明