博碩士論文 105226059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:100.26.179.196
姓名 李彥霖(Yen-Lin Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 CMOS影像感測器校正
(Calibration of CMOS Sensor)
相關論文
★ 中小型光學鏡組之高密度全場波前量測★ 使用液晶空間光線調制器之相移式光柵-十字狹縫量測裝置
★ 全像場同時取像像差量測★ 單頻位移與傾角量測干涉儀
★ 廣角物鏡之相對照度探討及其設計應用★ 新型零後焦長太陽能集光器的設計
★ 相移式干涉儀之系統校正及量測軟體的撰寫★ 非球面干涉儀之離軸對心校正
★ 高數值孔徑顯微物鏡設計★ Double Zernike Polynomial 校準光學系統
★ 薄型化光展量疊加太陽能集光器★ A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor
★ 雷射微型投影機波前量測技術★ 旋轉掃描式非球面干涉儀之演算法開發及應用
★ 校準低敏型Shack-Hartmann波前感測器★ 利用Slanted-edge方法以及相位回復演算法量測光學系統的成像像差
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 本篇論文主要為建立一個流程來校正CMOS Sensor上的不均勻度,使影像的品質提高。在積分球內放入光源,入射待校正的CMOS Sensor,藉由控制光源強度計算CMOS Sensor上每個像素灰階值的變化關係,的得到該像素上的增益值(Gain)與偏移量(Offset),對CMOS Sensor進行校正。在一開始的校正中我們對單一快門時間下的原始資料做校正,發現經過校正後的資料均勻度明顯提高。但在實驗過程中發現當快門時間改變時CMOS Sensor上每個像素灰階值的關係也會跟著改變,意味著必須要在不同的快門時間下找出每個像素灰階值的變化關係。
由於在所有快門時間都擷取資料,計算該快門時間下所有像素的增益值(Gain)與偏移量(Offset)所需擷取的資料太多,且若需在不同的快門時間下進行校正,則須重新進行分析,因此只做單一快門時間的校正變得非常沒有效率,在第三章中除了分析單一快門時間的資料,也使用兩種方法對不同快門時間下的資料進行分析。第一種方法是對不同快門時間的增益值(Gain)與偏移量(Offset),找出一組關係式再以此關係式算出不同快門時間下的增益值(Gain)與偏移量(Offset)。而第二種則是找出各個像素灰階值對快門時間的關係,並將不同快門時間下所得到的原始資料分別以上述兩種方法校正,最後與單一快門時間的校正結果比較,驗證是否達到相同的修正效果。
摘要(英) This paper is mainly to establish a process to correct the uniormity on the CMOS Sensor and improve the quality of the image. A light source is placed in the integrating sphere, and the CMOS sensor to be corrected is incident. The gain value and the offset of the pixel are obtained by calculating the relationship of the gray scale value of each pixel on the CMOS sensor by controlling the intensity of the light source correcting the CMOS Sensor. In the initial calibration, we corrected the original data at a single shutter time and found that uniformity of the corrected data was significantly improved. However, during the experiment, it was found that the relationship of the grayscale value of each pixel on the CMOS sensor changed when the shutter time changed, which means that the change relationship of the grayscale value of each pixel must be found at different shutter times.
Since all the data has to be gotten, using all of those data to calculate the gain value and offset of all pixels at different shutter time, too much data is needed. If calibration is required at another shutter time. The analysis must be re-examined. In that case, calibrating the data in a single shutter time become very inefficient. In Chapter 3, in addition to analyzing the data of a single shutter time, two methods are used to analyze the data at different shutter times. The first method is to find the set of relations between the gain value and the offset of different shutter times, and then calculate the gain value and offset at different shutter times. The second method is to find out the relationship between the grayscale value of each pixel and the shutter time, and calibrate the original data obtained at different shutter times by the two methods, which mentioned above. Finally compare both calibration result to the data, which calibrated by single shutter time method. In that case, we can confirm whether the two calibration methods are workable at different shutter times.
關鍵字(中) ★ 影像感測器
★ 校正
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、緒論 1
1-1  研究背景 1
1-2  研究動機 4
二、原理 6
2-1  基礎原理 6
2-1-1 積分球工作原理 6
2-1-2  CMOS Sensor的工作原理及噪訊討論 7
2-1-3  Gamma原理 14
三、實驗方法與架構 15
3-1  實驗架構 15
3-2  Gamma校正實驗 17
3-2-1 CMOS Sensor 均勻度的校正 19
3-3  實驗方法 20
3-3-1 單一快門時間的增益值與偏移量矩陣 20
3-3-2 不同快門時間的增益值與偏移量矩陣 23
3-3-3 不同像素灰階值對快門時間的變化 27
四、實驗結果與分析 30
4-1 單一快門時間下校正結果 30
4-2 不同快門時間下增益值與偏移量矩陣分析 34
4-2-1 AVTGT4096量測結果 34
4-2-2 不同快門時間增益值與偏移量矩陣校正結果 36
4-2-3 擬和時的誤差討論 40
4-3 不同快門時間下像素灰階值的分析結果 50
4-3-1 結果驗證 51
4-4 自動化擷取 53
4-4-1 自動化程式流程 53
五、結論 57
5-1-1 實驗結論 57
5-1-2 問題與討論 59
參考文獻 62
參考文獻 [1] 許秀貞、李自田和薛利軍,「CCD噪聲分析及處理技術」,紅外與激光工程,第三十三卷第四期,2004年8月。
[2] 陳迎娟、張之江和張智強,「CCD像素響應不均勻性的校正方法」,光學精密工程,第十二卷第二期,2004年8月。
[3] 程萬勝、趙杰和蔡鶴皋,「CCD像素響應非均勻的校正方法」,光學精密工程,第16卷第2期,2008年2月。
[4] Thomas J. Fellers and Michael W. Davidson:CCD Noise Sources and Signal-to-Noise Ratio.http://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
[5] Ralf Widenhorn, Justin C. Dunlap and Erik Bodegom , "Exposure Time Dependence of Dark Current in CCD Imagers ", IEEE Transactions on Electron Devices, Vol 57 , March 2010.
[6]W. C. McColgin, J. P. Lavine, J. Kyan, D. N. Nichols, and C. V. Stancampiano, "Dark Current Quantization in CCD Image Sensors ", International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, Dec. 1992
[7] 楊東諺, "Algorithm error analysis for relationship of centroid of spot and ray angle ",國立中央大學, 2017.
[8] Quinlan, F., and Fortier, T. M., and Jiang, H., and Diddams, S. A., "Analysis of shot noise in the detection of ultrashort optical pulse trains ", Journal of the Optical Society of America B, 30(6), 1775-1785, 2013.
[9] Shot noise.https://en.wikipedia.org/wiki/Shot_noise
[10] Poisson distribution.https://en.wikipedia.org/wiki/Poisson_distribution
[11] Alper, G.:Read noise versus shot noise – What is the difference and when does it matter?.https://www.adimec.com/read-noise-versus-shot-noise-what-is-the-difference-and-when-does-it-matter/
[12] Andor:Understanding read noise in sCMOS cameras.https://andor.oxinst.com/learning/view/article/understanding-read-noise-in-scmos-cameras
[13] Zadnik, J. A. and Beletic, J. W., "Effect of CCD readout noise in astronomical speckle imaging ", Applied Optics, 37(2), 361-368, 1998.
[14] Ma, J., and Masoodian, S., and Starkey, D. A., and Fossum, E. R., "Photon-number-resolving megapixel image sensor at room temperature without avalanche gain ", Optica, 4(12), 1474-1481, 2017.
[15] Tsujino, K., and Akiba, M., and Sasaki, M., "Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector ", Applied Optics, 46(7), 1009-1014, 2007.
[16] Richmond, M.:Readout noise, and total noise.http://spiff.rit.edu/classes/phys445/lectures/readout/readout.html
[17] McFee, C.:Noise sources in a CCD.http://www.mssl.ucl.ac.uk/www_detector/ccdgroup/optheory/darkcurrent.html#Readout%20noise
[18] McGrath, D., "Dark Current Limiting Mechanisms in CMOS Image Sensors ", 2017.
[19] Xiaohua Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera , "A Resonant Tunneling Quantum-Dot Infrared Photodetector ", IEEE Journal of Quantum Electronics, IEEE, Vol 41, July 2005.
[20] Belloir, J.-M., and Goiffon, V., and Virmontois, C., and Raine, M., and Paillet, P., and Duhamel, O., and Gaillardin, M., and Molina, R., and Magnan, P., and Gilard, O., "Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors ", Optics Express, 24(4), 4299-4315, 2016.
[21] Jahromi, H. D., and Mahmoodi, A., and Sheikhi, M. H., and Zarifkar, A., "Spectral response, dark current, and noise analyses in resonant tunneling quantum dot infrared photodetectors ", Applied Optics, 55(30), 8494-8499, 2016.
[22] Wrobel, Jaroslaw & Plis, Elena & Gawron, Waldemar & Motyka, Marcin & Martyniuk, Piotr & Madejczyk, Pawel & Kowalewski, Andrzej & Dyksik, Mateusz & Misiewicz, Jan & Krishna, Sanjay & Rogalski, Antoni. , "Analysis of Temperature Dependence of Dark
Current Mechanisms in Mid-Wavelength Infrared
pin Type-II Superlattice Photodiodes ", Sensors and Materials, Vol 26, pp. 235-244, 2014.
[23] Calculating quantum efficiency from A/W.https://ibsen.com/technology/detector-tutorial/calculating-quantum-efficiency/
[24] Quantum efficiency.https://en.wikipedia.org/wiki/Quantum_efficiency
[25] Alper, G.:CCD VS. CMOS, Sensitivity in low light improvements with industrial CMOS image sensor and cameras.https://www.adimec.com/ccd-vs-cmos-sensitivity-in-low-light-improvements-with-industrial-cmos-image-sensors-and-cameras/
[26] Wang, D., and Zhang, T., and Kuang, H., "Relationship between the charge-coupled device signal-to-noise ratio and dynamic range with respect to the analog gain ", Applied Optics, 51(29), 7103-7114, 2012.
[27] Michael Newberry:Tech Note: Pixel Response Effects on CCD Camera Gain Calibration.https://www.mirametrics.com/tech_note_ccdgain.php
[28] Kuznetsov, A. V., "Gamma correction of the amplitude response of the video channel of a television pyrometer ", Journal of Optical Technology, 78(2), 134-136, 2011.
[29] Guo, H., and He, H., and Chen, M., "Gamma correction for digital fringe projection profilometry ", Applied Optics, 43(14), 2906-2914, 2004.
[30] Sudhakaran, S.:What is Display Gamma and Gamma Correction.https://wolfcrow.com/what-is-display-gamma-and-gamma-correction/
[31] Understanding gamma correction.https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
指導教授 梁肇文(Chao-Wen Liang) 審核日期 2019-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明