博碩士論文 105226064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:54.152.38.154
姓名 林東俞(Tung-Yu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 螢光材料應用於電激發有機偏極子元件之研究
(Application of fluorescent materials in electrically pumped organic polariton device)
相關論文
★ 聚合物共混層發光二極體應用於電激發偏極子元件之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-24以後開放)
摘要(中) 本論文主旨為研究在intra-cavity pumping架構下以螢光OLED作為光子源之電激發有機偏極子。Intra-cavity pumping機制元件為直接激發偏極子能態發光,與一般偏極子元件相比,能降低偏極子散射的損耗,提升元件發光效率。其元件主要架構為在共振腔中置入高吸收的有機材料產生偏極子能態,以及合適的OLED作為光子源激發偏極子能態放光。
實驗研究中,偏極子元件以DCM橘紅光OLED與DCJTB紅光OLED作為光子源。藉由比對元件電性與光性表現,顯示光子源的發光效率對偏極子能態發光效率有直接的影響,而改變高吸收材料厚度,可調變偏極子元件拉比分裂大小,且不會影響偏極子能態發光效率。因此在未來進行偏極子元件研究時,能分別對光子源和吸收層進行優化達到最佳發光效率。
摘要(英) In the thesis, the electrically pumped organic polariton device with fluorescent OLED under the intra-cavity pumping structure was studied. The intra-cavity pumping polariton device can directly pump the polariton state to emit light, which can reduce the loss of the scattering of the polariton and improve the EQE of the polariton device. The main structure of the polariton device is to deposited a highly absorbing organic material in the resonant cavity to generate a polariton energy state, and a suitable OLED as a pumping OLED to excite the polariton state.
In this research, the pumping OLED of the polariton device is DCM orange OLED and DCJTB red OLED. By comparing the electrical and optical properties of the devices, it is shown that the EQE of the pumping OLED has a direct influence on the EQE of the polariton state. The thickness of the high-absorbing material is modulated, and the Rabi splitting energy of the polariton device can be adjusted without affecting the EQE of the polariton state. In the future research of polariton device, the pumping OLED and the absorption layer can be optimized respectively to achieve the best EQE.
關鍵字(中) ★ 偏極子
★ 強耦合
關鍵字(英) ★ polariton
★ strong-coupling
論文目次 摘要 I
ABSTRACT II
誌謝 III
第一章 緒論 1
1-1 名詞解釋 1
1-2 有機偏極子雷射發展與物理機制 3
1-3 研究動機 10
第二章 基礎理論 12
2-1 膜矩陣(MATRIX OF THIN FILM) 12
2-1-1 正向入射 12
2-1-2 斜向入射 14
2-1-3非相干性之反射與透射 15
2-2 電場分佈 16
2-2-1 導納軌跡 17
2-2-2 四分之一膜堆(Quarter-wave stack)反射鏡 19
2-2-3 電場分佈 19
2-3 KRAMERS-KRONIG RELATION 21
2-4微共振腔中光子模態與強耦合關係 22
2-4-1 微共振腔中光場模態 23
2-4-2 哈密頓量(Hamiltonian)與哈密頓矩陣 24
2-5 有機發光二極體基礎理論 28
2-5-1 有機發光二極體基本結構 28
2-5-2 載子注入與傳輸機制 29
2-5-3 主體(Host)與客體(Guest)間能量轉移機制 32
2-5-4 量子效率(Quantum Efficiency) 33
第三章 實驗方式與步驟 35
3-1 製程與儀器介紹 35
3-1-1 雙電子槍蒸鍍系統(Double E-gun) 35
3-1-2 浸沾式塗佈(Dip)與旋轉塗佈(Spin)製程 36
3-1-3 熱蒸鍍系統(Thermal evaporation coater) 37
3-1-4 手套箱(Glove box) 39
3-2 量測儀器 39
3-2-1半導體參數分析儀(SPA)及Photodiode 40
3-2-2 即時多角度光譜量測系統 41
3-2-3 可攜式光譜儀 42
3-2-4 紫外光/可見光光譜儀 43
3-2-5 積分球光學檢測儀(Integrating Sphere) 43
3-3 實驗步驟 44
第四章 實驗結果與分析 47
4-1 高吸收有機自聚集分子層 47
4-2 MACLEOD 光學膜層設計與螢光光子源OLED 49
4-2-1 Macleod 光學膜層設計 49
4-2-2 螢光光子源 52
4-3 共振腔元件量測結果與討論 55
4-3-1 橘光強耦合元件 55
4-3-2 紅光強耦合元件 57
第五章 結論與未來展望 62
參考文獻 64
參考文獻 1. Weisbuch, Claude, et al. "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity." Physical Review Letters 69.23 (1992): 3314.
2. Deng, Hui, Hartmut Haug, and Yoshihisa Yamamoto. "Exciton-polariton bose-einstein condensation." Reviews of Modern Physics 82.2 (2010): 1489.
3. Schneider, Christian, et al. "An electrically pumped polariton laser." Nature 497.7449 (2013): 348.
4. Kéna-Cohen, S., and S. R. Forrest. "Room-temperature polariton lasing in an organic single-crystal microcavity." Nature Photonics 4.6 (2010): 371.
5. Coles, David M., et al. "Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity." Nature materials 13.7 (2014): 712.
6. Würthner, Frank, Theo E. Kaiser, and Chantu R. Saha‐Möller. "J‐aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials." Angewandte Chemie International Edition 50.15 (2011): 3376-3410.
7. Coles, David M., et al. "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities." Physical Review B 88.12 (2013): 121303.
8. Christogiannis, Nikolaos, et al. "Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED." Advanced Optical Materials 1.7 (2013): 503-509.
9. Akselrod, Gleb M., et al. "Lasing through a strongly-coupled mode by intra-cavity pumping." Optics express 21.10 (2013): 12122-12128.
10. Tischler, Jonathan R., et al. "Strong coupling in a microcavity LED." Physical review letters 95.3 (2005): 036401.
11. Genco, Armando, et al. "Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime." Advanced Optical Materials 6.17 (2018): 1800364.
12. 李正中, 薄膜光學與鍍膜技術. 第八版, 藝軒圖書出版社
13. Lidzey, David G., et al. "Strong exciton–photon coupling in an organic semiconductor microcavity." Nature 395.6697 (1998): 53.
14. Coles, David M., et al. "Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity." Physical Review B 84.20 (2011): 205214.
15. Coles, David M., et al. "Vibrationally Assisted Polariton‐Relaxation Processes in Strongly Coupled Organic‐Semiconductor Microcavities." Advanced Functional Materials 21.19 (2011): 3691-3696. R.J. Holmes , S.R. Forrest , Strong exciton–photon coupling in organic materials. Organic Electronics, 8 , 77–93(2007).
16. Tischler, Jonathan R., et al. "Exciton-polaritons at room temperature in dielectric microcavities exhibiting rabi-splitting Ω R≫ 100 meV." Quantum Electronics and Laser Science Conference, 2007. QELS′07. IEEE, 2007.
17. Bradley, M. Scott, and Vladimir Bulović. "Intracavity optical pumping of J-aggregate microcavity exciton polaritons." Physical Review B 82.3 (2010): 033305.
18. Tischler, Jonathan R., M. Scott Bradley, and Vladimir Bulović. "Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film." Optics letters 31.13 (2006): 2045-2047.
19. Connolly, L. G., et al. "Strong coupling in high-finesse organic semiconductor microcavities." Applied physics letters 83.26 (2003): 5377-5379.
20. Rajendran, Sai K., et al. "Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity." Physical Review B 91.20 (2015): 201305.
21. Akselrod, G. M., et al. "Reduced lasing threshold from organic dye microcavities." Physical Review B 90.3 (2014): 035209.
22. Bertie, John E., and Shuliang L. Zhang. "Infrared intensities of liquids. IX. The Kramers–Kronig transform, and its approximation by the finite Hilbert transform via fast Fourier transforms." Canadian Journal of Chemistry 70.2 (1992): 520-531.
23. Nitsche, Robert, and Torsten Fritz. "Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors." Physical Review B 70.19 (2004): 195432.
24. Coles, David M., et al. "A Characterization of the Raman Modes in a J-Aggregate-Forming Dye: A Comparison between Theory and Experiment." The journal of physical chemistry A 114.44 (2010): 11920-11927.
25. Wei, Hung-Sen, et al. "Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities." Optics express 21.18 (2013): 21365-21373.
26. Chang, Jui-Fen, et al. "Process dependence of morphology and microstructure of cyanine dye J-aggregate film: correlation with absorption, photo-and electroluminescence properties." Optics express 22.24 (2014): 29388-29397.
27. 林成之,”有機染料分子薄膜之光電特性研究”, 碩士,光電科學與工程學系, 國立中央大學, 桃園市 (2014).
28. 許家福,”電激發有機偏極子元件之研究”,碩士,光電科學與工程學系, 國立中央大學, 桃園市 (2016).
29. 洪舜昱,”即時多角度光譜量測系統結合電致發光、光致發光及反射量測” ,碩士,光電科學與工程學系, 國立中央大學, 桃園市 (2016).
30. 林琨傑,”以MATLAB為平台以Kramers-Kronig relation 計算材料光學性質”, 碩士,物理系,國立中山大學,高雄市 (2014).
31. Xie, Z. Y., L. S. Hung, and S. T. Lee. "High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure." Applied Physics Letters 79.7 (2001): 1048-1050.
32. Vacca, Paolo, et al. "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance." The Journal of Physical Chemistry C 111.46 (2007): 17404-17408.
指導教授 張瑞芬 簡汎清(Jui-Fen Chang Fan-Ching Chien) 審核日期 2019-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明