博碩士論文 105226068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.90.204.40
姓名 陳頤(Yi Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 即時性多角度光譜儀系統 之校正與應用
(One-snap multi-angle spectroscopy optical system for calibration and application)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-24以後開放)
摘要(中) 本論文主要研究於即時性多角度光譜系統之架設、校正和量測,系統由物鏡、無焦系統、光學狹縫、光柵與互補式金屬氧化物半導體晶片所組成,藉由物鏡使不同角度的光導入系統,將對其作空間濾波、波長分光與匹配光束大小,最後可得波長與角度之二為空間頻譜。
由於系統受光學元件響應影響,導致光強度分布失真,故藉由光纖校正其強度。電致發光之校正頻譜沿用學長之研究結果,在此以紅光與綠光OLED作為待測物,驗證校正頻譜之正確性。而光致發光為區域發光難以定義發光面積,需再次對其光強度做校正,校正方法同樣是以光纖進行校正,並在以橘光材料驗正光致發光校正頻譜之正確性。反射率量測為相對強度之量測,以高反射率且反射率較不會隨角度飄移之銀鏡當作反射率基準,量測方法為使用系統擷取銀鏡與待測樣品之二維頻譜,兩者對除後在乘上銀鏡實際之反射率及可得到樣品之空間反射頻譜。
即時性多角度光譜量測系統相較於光纖量測有諸多優點,除了能迅速取得平面光源空間頻譜外,更可藉由系統量測出零度角之反射率或是低角度下的光致發光頻譜,上述優點在一般光纖量測下較難以達成,最後本論文以提出此系統可用於量測角度相關元件以及OLED量測之可行性。
摘要(英) This thesis focuses on the establishment, calibration and measurement of one-snap multi-angle spectroscopy optical system, the system consists of an objective lens, an afocal system, an optical slit, a grating and a Complementary Metal-Oxide-Semiconductor (CMOS) chip, the objective lens is used to collect different angles of light into the system, pass through spatially filter, separates the wavelength and match the beam size. Finally, we can obtain spatial spectrum of two dimensions which are wavelength and angle.
The light intensity distribution is distorted since the system is affected by the response of the optical element, so we calibrate system intensity by optical fiber.
The calibrating matrix of electroluminescence follows the previous research results, in this thesis the red and green OLEDs are used to check the correctness of the calibrating matrix. Photoluminescence is difficult to define the area of illumination, it is necessary to calibrate its light intensity again. The calibration method is also calibrated by fiber, and using orange light material verification of the correctness of the photoluminescence calibrating matrix. The reflectance measurement is a measure of relative intensity, this system uses a silver mirror as the reflectivity reference. Using the system to capture two-dimensional spectrum of the silver mirror and the sample, separately. Spectrum of the sample divided by spectrum of the silver mirror is the reflectance of sample.
One-snap multi-angle spectroscopy optical system have many advantages over fiber. In addition to quickly obtaining the spatial spectrum of the planar light source, the system can measure the reflectance at a zero angle or the photoluminescence spectrum at a low angle. The above advantages are more difficult to achieve under general fiber measurement. Finally, this paper proposes that this system can be used to measure the angle resolved components and OLEDs measurement.
關鍵字(中) ★ 光譜儀
★ 角度
★ 角度解析
★ 反射
★ 光致發光
★ 電致發光
★ 空間頻譜
關鍵字(英) ★ spectrometer
★ angle
★ Angle resolved
★ reflectance
★ Photoluminescence
★ Electroluminescence
★ Spatial spectrum
論文目次 目錄
中文摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2研究動機與目的 2
1-2-1 光纖量測 2
1-2-2 即時多角度光譜量測系統 3
第二章 基礎理論 4
2-1 即時性多角度光譜量測系統理論 4
2-1-1 透鏡成像公式 4
2-1-2 無焦系統 5
2-1-3 閃耀光柵之理論與計算 6
2-1-4 空間濾波 8
2-1-5朗伯餘弦定理 9
2-2 光致發光之理論 10
2-3 有機發光二極體結構與理論 11
2-3-2 電荷注入限制電流 12
2-3-3 空間電荷限制電流 14
第三章 實驗方式與步驟 15
3-1 實驗製程 15
3-1-2 旋轉塗佈機 16
3-1-2 手套箱 16
3-1-3 單層有機薄膜之製程 17
3-1-4 有機發光二極體之製程與結構 18
3-1-5 實驗步驟 20
3-2 實驗量測 22
3-2-1 半導體參數分析儀 22
3-2-2 光纖旋轉平台量測 23
3-2-5 積分球 25
第四章 實驗結果與討論 26
4-1 即時性多角度光譜量測系統之架設 26
4-2 系統校正 29
4-2-1 系統之光譜解析度 30
4-2-2 波長校正 31
4-2-3 角度校正 32
4-2-4 光強度校正 33
4-2-4-1電致發光量測之強度校正 34
4-2-4-2光致發光量測之強度校正 37
4-3 電致發光量測 41
4-3-1實驗方法與結果 42
4-4 光致發光量測 46
4-4-1 光致發光測之架設 46
4-4-2 實驗方式與結果 47
4-4-3 結果討論 49
4-5 反射率量測 51
4-5-1 反射率量測之架設 51
4-5-2 實驗方式與結果 52
4-5-3 結果討論 55
4-6 即時多角度量測系統之應用 56
第五章 結論與未來展望 58
參考文獻 60


圖目錄
圖1-2-1 光纖量測示意圖 2
圖2-1-1 透鏡成像公式示意圖 4
圖2-1-2 透鏡準直點光源示意圖 5
圖2-1-3 無焦系統示意圖 5
圖2-1-4 Blazed grating示意圖 7
圖2-1-5 空間濾波之架設示意圖 8
圖2-1-6 朗伯餘弦定理示意圖 9
圖2-2-1 分子能階示意圖 10
圖2-3-1 OLED發光機制示意圖 12
圖2-3-2 Richardson-Schottky熱注入理論示意圖 13
圖2-3-3 Fowler-Nordheim穿隧理論示意圖 13
圖3-1-1 熱蒸鍍機系統示意圖 16
圖3-1-2 材料分子式示意圖 17
圖3-1-3 藍、綠光OLED結構及分子能階 18
圖3-1-4 (a)綠光與(b)紅光OLED結構與分子能階示意圖 19
圖3-1-5 材料分子式示意圖 20
圖3-1-6 OLED元件區尺寸示意圖 21
圖3-2-1 OLED電性量測示意圖 23
圖3-2-2 光纖旋轉平台量測示意圖 24
圖3-2-3 積分球量測示意圖 25
圖4-1-1 系統光軸示意圖 26
圖4-1-2 即時性多角度光譜量測系統架設示意圖 28
圖4-2-1 汞燈2048 × 2048個像素值的二維影像(a)原始圖, (b)色階圖 29
圖4-2-2 系統拍攝之汞燈譜線圖 30
圖4-2-3 波長校正關係圖 31
圖4-2-4 不同波長之角度校正關係圖 32
圖4-2-5 (a)物鏡 (b) CMOS之響應頻譜[30-31] 33
圖4-2-6 藍綠光OLED發光頻譜 34
圖4-2-7 (光纖量測)藍綠光OLED (a)空間頻譜, (b)光強度分布圖 35
(c)總光強度分布之極座標圖 35
圖4-2-8 (系統量測)藍綠光OLED (a)空間頻譜, (b)光強度分布圖 36
圖4-2-9 電致發光之光強度校正頻譜圖 36
圖4-2-10 光致發光之光纖量測架構示意圖 37
圖4-2-11 光纖量測之光強度分布 38
圖4-2-12 PFO:F8BT光致發光頻譜 39
圖4-2-13 光纖量測PFO:F8BT光致發光之空間頻譜 39
圖4-2-14 PFO:F8BT薄膜之光致發光總光強度分布極座標圖 40
圖4-2-15 (a) 系統量測PFO:F8BT光致發光之空間頻譜(b) 光致發光之光強度校正頻譜 40
圖4-3-1 電致發光量測示意圖 41
圖4-3-2 (a) 紅光OLED(b) 綠光OLED之發光頻譜 41
圖4-3-3 光纖量測(a) 綠光OLED(b) 紅光OLED空間頻譜 42
圖4-3-4 系統量測(a) 綠光OLED(b) 紅光OLED空間頻譜 42
圖4-3-5 已校正之系統量測(a) 綠光OLED(b) 紅光OLED空間頻譜 43
圖4-3-6 (a) 綠光與(b) 紅光OLED 0°、±30°、±60° 之電致發光頻譜比較 44
圖4-3-7 藍綠光、綠光和紅光OLED總光強度分佈極座標圖 45
圖4-4-1 光致發光量測示意圖 46
圖4-4-2 PMMA:TPB3:DCM之光致發光光譜 47
圖4-4-3 (a)光纖量測 (b)系統量測TPB3:DCM光致發光之空間頻譜 48
圖4-4-4 已校正之系統量測TPB3:DCM光致發光之空間頻譜 48
圖4-4-5 TPB3:DCM 0°、±30°、±60°之光致發光頻譜比較 49
圖4-4-6 各有機膜之光致發光總光強度分佈極座標比較圖 50
圖4-5-1 反射率量測示意圖 51
圖4-5-2 系統擷取之二維影像 (a)銀鏡 (b)分散式布拉格反射鏡 53
圖4-5-3 積分球量測之銀鏡空間反射頻譜 54
圖4-5-4 分散式布拉格反射鏡之空間反射頻譜(a)未修正(b)已修正 54
圖4-5-5 分散式布拉格反射鏡於每10° 之反射頻譜 55
圖4-6-1 (a)紅光偏極子元件結構 56
圖4-6-2 (a)電致發光空間頻譜 (b)0°~30°每5°之波長光譜 56
圖4-6-3 (a)反射率空間頻譜 (b)0°~60°每5°之反射率光譜 57
參考文獻 [1] Q. Wang, Y. Tao, X. Qiao, J. Chen, D. Ma, C. Yang, and J. Qin, "High-Performance, Phosphorescent, Top-Emitting Organic Light-Emitting Diodes with p–i–n Homojunctions", Adv. Funct. Mater. 21, 1681–1686 (2011).
[2] J. Jang, and S. H. Han, "High-performance OTFT and its application", Curr. Appl. Phys. 6, e17–e21 (2006).
[3] L.M. Chen, Z. Xu, Z. Hong, and Y. Yang, "Interface investigation and engineering-achieving high performance polymer photovoltaic devices", J. Mater. Chem. 20, 2575–2598 (2010).
[4] I. D. W. Samuel* and G. A. Turnbull, "Organic Semiconductor Lasers", Chem. Rev. 107, 1272-1295 (2007).
[5] E. Ahmed, T. Earmme, and S. A. Jenekhe, "New Solution-Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs", Adv. Funct. Mater. 21, 3889–3899 (2011).
[6] T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, "Efficient Phosphorescent Polymer Yellow-Light-Emitting Diodes Based on Solution-Processed Small Molecular Electron Transporting Layer", ACS Appl. Mater. Interfaces 3, 410–416 (2011).
[7] J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, "Thin film encapsulation for flexible AM-OLED: a review", Semicond. Sci. Technol. 26, 034001 (2011).
[8] D. Comoretto, Organic and Hybrid Photonic Crystals, Springer (2015).
[9] D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, "Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities", Phys. Rev. Lett. 82, 3316 (1999).
[10] R. J. Holmes, and S. R. Forrest, "Strong exciton-photon coupling in organic materials", Org. Electronic. 8, 77 (2007).
[11] V. N. Mahajan, Fundamentals of Geometrical Optics, SPIE Press (2014).
[12] Newport Corporation, Richardson Gratings Technical Note 11-Deter-mination of the Blaze Wavelength, Newport Corporation (2012)
[13] J. W. Goodman, Introduction to Fourier Optics, Roberts and Company Publishers (2005).
[14] C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission", Appl. Phys. Lett. 90, 109–211 (2007)
[15] M. T. Lee , M. R. Tseng, "Efficient, long-life and Lambertian source of top-emitting white OLEDs using low-reflectivity molybdenum anode and co-doping technology", Curr. Appl. Phys., 616–619 (2008)
[16] C. H. chen and H. W. Huang, OLED: Organic Electroluminescence Materials & Devices, Wu-Nan Book Inc. (2005)
[17] D. Z. Garbuzov, V. Bulovic, P. E. Burrows, S. R. Forrest, "Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films", Chem. Phys. Lett. 249, 433–437 (1996).
[18] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers", Appl. Phys. Lett. 91, 253–504 (2007).
[19] H. B. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. H. Jeong, K. H. Cho, and Y. J. Yi, " The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N′N,N′-bis(1-naphthyl)-N,N′N,N′-diphenyl-1,1′ 1,1′-biphenyl- 4,4′4,4′-diamine interfaces", Appl. Phys. Lett. 93, 043–308 (2008).
[20] L. S. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode", Appl. Phys. Lett. 70, 152 (1997).
[21] J. G. Simmons, "Richardson-Schottky Effect in Solids", Phys. Rev. Lett. 15, 967-968 (1965)
[22] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala, and A. Rubino, "The Relation between the Electrical, Chemical, and Morphological Properties of Indium−Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance", J. Phys. Chem. C 111, 17404-17408 (2007).
[23] R. H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proc. R. Soc. London Ser. A 119, 173 (1928).
[24] A. J. Heeger, I. D. Parker, Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling", Syn. Metals 67, 23–29 (1994)
[25] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, "Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer", Adv. Funct. Mater. 22, 3261–3266 (2012).
[26] Ossila Ltd, OLED reference device, Ossila Ltd
[27] S. H. Tang, M. H. Liu, and Y. K. Su, "Stable and highly bright white organic light-emitting diode based on 4,4′4′,4′′4-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine", J. Appl. Phys. 100, 083–111 (2006)
[28] M.Y. Chang, Y. K. Han, C. C. Wu, S. C. Lin, and W. Y. Huanga, "High-efficiency Red Organic Light Emitting Diodes Incorporating 1,3,5-Tris(1-pyrenyl)benzene as the Host Material", Journal of The Electrochemical Society.155, 345–349 (2008).
[29] Hamamatsu Photonics K.K., "Digital CMOS Camera C11440-22CU Instruction manual", Hamamatsu Photonics K.K. (2016).
[30] Olympus Corporation, Data Sheet UPLSAPO 40X2, Olympus Corporation.
指導教授 張瑞芬 郭倩丞(Jui-Fen Chang Cian Cheng Guo) 審核日期 2019-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明