博碩士論文 105226079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.227.2.246
姓名 翁勝德(Sheng-De Wong)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 反溶劑滴入時間對鈣鈦礦薄膜形成之影響與其光伏電池之應用
(Influence of the dropping time of antisolvent on the formation of perovskite thin films and their application in photovoltaic cells)
相關論文
★ 反式雙鈣鈦礦MAxCs1-xPb(IxBr1-x)3薄膜太陽能電池之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-1以後開放)
摘要(中) 近十年來有機-無機鈣鈦礦太陽能電池的功率轉換效率已經超過20%。而鈣鈦礦薄膜的製造方式有真空熱蒸鍍與溶液塗佈製程。並以旋轉塗佈製程為主流,因其製程成本低與製程時間短。
本論文研究的有機-無機鈣鈦礦太陽能電池之元件架構為: Ag/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass。Ag與ITO (氧化銦錫)分別為陰極與陽極; [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM )與Poly(3-hexylthiophene-2,5-diyl) (PEDOT:PSS)分別是電子傳輸層(electron transport layer, ETL)與電洞傳輸層(hole transport layer, HTL); CH3NH3PbI3則是鈣鈦礦結構吸光層。為了達到高效率的鈣鈦礦太陽能電池,我們研究了反溶劑的滴落時間對鈣鈦礦薄膜太陽能電池的光伏特性之影響。當使用DMF / DMSO(9:1v / v)混合物作為鈣鈦礦前驅溶劑時,當反溶劑的滴落時間為倒數第17秒時,能獲得適合製作鈣鈦礦薄膜太陽能電池的光吸收層。
另外,反溶劑的滴落時間顯著的影響鈣鈦礦薄膜的外觀,因此本論文利用X光繞射儀、透射光譜、螢光光譜、時間解析螢光光譜、反射式光學顯微鏡、原子力顯微鏡與水滴接觸角,分析鈣鈦礦薄膜的表面、結構與光電特性,藉此了解反溶劑的低落時間在形成鈣鈦礦薄膜過程中所扮演的角色。
本實驗最高的功率轉換效率為13.19 % ,對應的開路電壓(open-circuit voltage, VOC)、短路電流密度(short-circuit current density, JSC )與填充因子(fill factor, FF)分別為0.997 V、20.52 mA/cm2與64.47 %。
摘要(英) In the recent decade, the power conversion efficiency (PCE) of perovskite solar cells was improved to more than 20%. Perovskite thin films can be fabricated by using thermal evaporation methods or spin coating processes. Spin coating methods were widely applied to the formation of the high-quality perovskite thin films due to the low-cost processes.
In this thesis, the device architecture of the perovskite solar cell is silver/ PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass. Silver and ITO are deposited as the cathode and the anode, respectively. PCBM and PEDOT:PSS are deposited as the electron transport layer and the hole transport layer, respectively. The CH3NH3PbI3 perovskite thin film is the light absorbing layer. In order to achieve the high efficient perovskite solar cell, we investigated the effect of the dropping time (DT) of the washing solvent (antisolvent) on the photovoltaic performance of perovskite solar cells. When the DMF/DMSO (9:1 v/v) mixture is used as the solvent of the perovskite precursor and the DT of the antisolvent is 17s, the high-quality perovskite thin film can be achieved with high PCE.
In addition, the DT of the antisolvent significantly affects the appearance of the perovskite thin films. Therefore, the X-ray diffractometer, transmission spectrometer, photoluminescence (PL) spectrometer, time-resolved PL detector, optical microscope, atomic-force microscope and water-droplet contact angle imaging system were used to analyze the surface, structural and optoelectronic properties of the perovskite films in order to understand the role of the DT of the antisolvent in the formation of a perovskite thin film.
Finally, the highest PCE of the perovskite solar cells is 13.19 %. The corresponding open-circuit voltage (VOC), short-circuit current density (JSC) and fill factor (FF) are 0.997 V, 20.52 mA/cm2 and 64.47%, respectively.
關鍵字(中) ★ 鈣鈦礦 關鍵字(英) ★ Perovskite
論文目次 第一章 緒論……………………………………...…………..……1
1.1 前言…………………………………………………………...…..1
1.2 本文架構…………………..…………………………...………...3
1.3 太陽能電池種類與介紹………………………………………4
1.3.1 無機太陽能電池……………………………………..……..4
1.3.2 有機太陽能電池………………………..………………..…5
1.3.3鈣鈦礦太陽能電池…………………………………...……11
1.4 研究動機……………………………………………...............….15
第二章 鈣鈦礦太陽能電池起源與介紹…………...……..16
2.1 鈣鈦礦結構………………………...………………………..…..16
2.2鈣鈦礦太陽能電池的能量轉換效率演進表………………..17
2.3 影響鈣鈦礦成膜的因素……………………………………....19
2.3.1 前驅物溶劑的選擇…………………………………………19
2.3.2 熱退火環境…………………………………………………20
2.3.3 反溶劑的選擇………………………………………………20
2.4鈣鈦礦薄膜太陽能電池的工作原理………………..……….22
2.5 本論文使用之文獻回顧…………………………………..…..24
第三章 實驗方法…………………………..…….……………….27
3.1 實驗藥品與實驗材料………………………….…………...….27
3.2 製程儀器………………………………………………………....28
3.2.1 兩段式旋轉塗佈機(Spin Coater)………………….………..28
3.2.2 手套箱………………………………………………………28
3.2.2 熱蒸鍍鍍膜系統…………………………………………....29
3.3 量測儀器……………………………………………….…….......30
3.3.1 太陽光模擬器………………………………………………30
3.3.2 光學顯微鏡…………………………………………………31
3.3.3 光激發螢光光譜儀、時間解析螢光光譜儀………..………31
3.3.4 紫外光/可見光光譜儀………………………………...……32
3.3.5 水接觸角……………………………………………………32
3.3.6 原子力顯微鏡…………………………………………...….33
3.3.7 X光繞射儀………………………………………....………..34
3.4 藥品純化與材料準備……………….…………………………35
3.4.1 甲基胺純化………………………………………...……….35
3.4.2 材料準備…………………………………………..………..36
3.5鈣鈦礦太陽能電池製程流程…………………………….……36
3.5.1 ITO蝕刻玻璃機板清洗……………………………………..36
3.5.2 UV Ozone cleaner………………………………………........37
3.5.3 旋塗電洞傳輸層(PEDOT:PSS)………………….………....37
3.5.4 旋塗主動層(CH3NH3PbI3)…………………………….……38
3.5.5 旋塗電子傳輸層…………………………………………....39
3.5.6對電極圖案化………………………….…….………………39
3.5.7 蒸鍍銀電極…………………………………………………39
第四章 鈣鈦礦太陽能電池製作與結果分析……….…..40
4.1材料的選擇…………………………………….…………………40
4.1.1 電洞傳輸層…………………………………………………40
4.1.2 電子傳輸層……………………………………….......…….43
4.2 鈣鈦礦膜的結晶性與均勻度…………...……………..……..44
4.2.1 XRD……………………………………………..…………44
4.2.2 透射光譜…………………………………………………....44
4.2.3 光激發螢光光譜(PL)與時間解析螢光光譜(TRPL)……....46
4.3 鈣鈦礦膜的粗糙度與被浸潤性……………………...………48
4.3.1 鈣鈦礦膜的外觀……………………………………………48
4.3.2 反射式光學顯微鏡(Optical Microscope,OM)……….….….49
4.3.3 原子力顯微鏡(AFM)……………………………….………50
4.3.4 水接觸角…………………………………………………....51
4.4 鈣鈦礦太陽能電池的光伏特性………..………...…………..52
第五章 結論………………………………………………….….....56
參考文獻 [1] 中國石油, "世界石油的壽命還有多長, "每日頭條, https://kknews.cc/zh-tw/news/2a4b38g.html (2016)
[2] 陳緯庭, "核能的優點與缺點, "核能與我, https://kts1d5.wordpress.com/%E6%A0%B8%E8%83%BD%E5%84%AA%E9%BB%9E%E5%92%8C%E7%BC%BA%E9%BB%9E/ (2012)
[3] 邱詠程,再生能源的介紹, https://scitechvista.nat.gov.tw/c/sfzh.htm (2017)
[4] 吳繼熊, "台灣太陽能產業成本效率之研究, "致理通識學報, 5, 6 (2017)
[5] 黃秉鈞, "以「淨能計畫」來帶動溫室效應氣體的減量, "民間能源會議, http://www.taiwanwatch.org.tw/issue/nuclear/news-01/87051611.htm (1998)
[6] NREL, "Best Research-Cell Efficiencies, " NREL (2018)
[7] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, 131, 6050 (2009)
[8] V.Y. Merritt, H.J. Hovel, "Organic solar cells of hydroxy squarylium," Applied Physics Letters, 29 , 414 (1979)
[9] C.W. Tang, "Two?layer organic photovoltaic cell," Applied Physics Letters, 48, 183 (1986)
[10] P. Peumans, S.R. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells," Applied Physics Letters, 79 , 126 (2001)
[11] J. Tsukamoto, H. Ohigashi, K. Matsumura, A. Takahashi, Journal of Applied Physics, 20, 127 (1981)
[12] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T.Fromherz, J.C. Hummelen, "2.5% efficient organic plastic solar cells," Applied Physics Letters, 78, 841 (2001)
[13] F. Padinger, R.S. Rittberger, N.S. Sariciftci, "Effects of postproductiontreatment on plastic solar cells," Advanced Functional Materials, 13, 85 (2003)
[14] J.S. Huang, G. Li, Y. Yang, "Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and 6,6 -phenyl C-61-butyric acid methyl ester blends," Applied Physics Letters., 87, 3 (2005)
[15] G. Li, V. Shrotriya, Y. Yao, Y. Yang, "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)," Journal of Applied Physics, 98, 5 (2005)
[16] V. Shrotriya, J. Ouyang, R.J. Tseng, G. Li, Y. Yang, "Absorption spectra modification in poly(3-hexylthiophene): methanofullerene blend thin films," Chemical Physics Letters, 411, 138 (2005)
[17] 吳勇蒼,分離式二氧化鈦奈米管在染料敏化太陽能電池之運用, 中央大學光電所碩士論文 (2014)
[18] 陳威年,添加溶劑對於鈣鈦礦薄膜太陽能電池表現之影響, 中央大學光電所碩士論文 (2016)
[19] B. Oregan, M. Gratzel,"A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films," Nature, 353, 737 (1991)
[20] M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews, Flexible, "low-temperature, solution processed ZnO-based perovskite solid state solar cells," Chemical Communications, 49, 11089 (2013)
[21] 李言榮,惲正中,材料物理學概論, 五南出版社 (2003)
[22] 黃偉宸,碳六十衍生物於鈣鈦礦材料介面之研究及太陽能電池之特性, 中央大學光電所碩士論文 (2017)
[23] Z.C. He, C.M. Zhong, S.J. Su, M. Xu, H.B. Wu, Y. Cao, "Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure," Nature Photonics, 6 , 591 (2012)
[24] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, 131, 6050 (2009)
[25] Nam-Gyu Park, "Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell," The Journal of Physical Chemistry Letters, 4, 15, 2423
[26] Naoki Inoue, Yanhui Zou, "Physical properties of perovskite-type lithium ionic conductor," Physics of Solid State Ionics (2006)
[27] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, 131, 6050 (2009)
[28] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, 342, 344 (2013)
[29] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3," Solid state communications, 127, 619 (2003)
[30] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, "6.5% efficientperovskite quantum-dot-sensitized solar cell," Nanoscale, 3, 4088 (2011)
[31] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, 2, 7 (2012)
[32] J.-H. Im, I.-H. Jang, N. Pellet, M. Gratzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature nanotechnology, 9, 927 (2014)
[33] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, 9, 1989 (2016).
[34] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, "Low-temperature processed meso-superstructured to thin-film perovskite solar cells," Energy & Environmental Science, 6, 1739 (2013)
[35] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells," Nano Letters, 13, 1764 (2013)
[36] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, 499, 316 (2013)
[37] H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, "Interface engineering of highly efficient perovskite solar cells," Science, 345,542 (2014)
[38] Q. Chen, H.P. Zhou, Z.R. Hong, S. Luo, H.S. Duan, H.H. Wang, Y.S. Liu, G. Li, Y. Yang, "Planar HeterojunctionPerovskite Solar Cells via Vapor-Assisted Solution Process," Journal of the American Chemical Society, 136, 622 (2014)
[39] M.Z. Liu,M.B. Johnston, H.J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, 501, 395 (2013)
[40] J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen,"CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells," Advanced Materials., 25, 3727 (2013)
[41] W.Y. Nie, H.H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, 347 , 522 (2015)
[42] H.S. Kim, S.H. Im, N.G. Park, "Organolead Halide Perovskite: New Horizons in Solar Cell Research," The Journal of Physical Chemistry C, 118, 5615 (2014)
[43] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, 13, 897 (2014)
[44] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, "6.5% efficientperovskite quantum-dot-sensitized solar cell," Nanoscale, 3, 4088 (2011)
[45] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, 3, 4088 (2011)
[46] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, 13, 897 (2014)
[47] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray?Weale, U. Bach, Y. B. Cheng, and L. Spiccia, "A fast deposition?crystallization procedure for highly efficient lead iodide perovskite thin?film solar cells," Angewandte Chemie, 126, 10056 (2014)
[48] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, and Y. Zhou, "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells," Nano Energy, 10, 10 (2014)
[49] W.-J. Yin, T. Shi, and Y. Yan, "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, 104, 63903 (2014)
[50] W.J. Yin, T.T. Shi, Y.F. Yan, "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, 104, 4 (2014)
[51] F. Brivio, A.B. Walker, A. Walsh, "Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles," APL Materials, 1, 5 (2013)
[52] J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, "Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells," Nano Letters, 14, 2584 (2014)
[53] 林昆鋒,高效率有機、無機鈣鈦礦薄膜太陽能電池製程與電光特性之研究, 中央大學光電所碩士論文 (2015)
[54] 鄭茹芬與蘇文義,顯微鏡的成像原理, http://www.phy.ntnu.edu.tw/demolab/phpBB/viewtopic.php?topic=13406 (2005)
[55] Renishaw,光致發光說明, http://www.renishaw.com.tw/tw/photoluminescence-explained--25809
[56] Johnson, "Contact Angle Hysteresis, " The Journal of Physical Chemistry (1964)
[57] 施博仁, "古典梁理論和先進原子力顯微鏡應用, "杜風電子報, 84
[58] John M. Cowley, "RE.Diffraction physics , " International Standard Book Number, 0-444-10791-6 (1975)
[59] S. H. Chang, K.-F. Lin, K. Y. Chiu, C.-L. Tsai, H.-M. Cheng, S.-C. Yeh, W.-T. Wu, W.-N. Chen, C.-T. Chen, and S.-H. Chen, "Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer," Solar Energy, 122, 892 (2015)
[60]李正中,薄膜光學與鍍膜技術,藝軒圖書出版社 (2016)
指導教授 陳昇暉 張勝雄(Sheng-Hui Chen Sheng Hsiung Chang) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明