博碩士論文 105226082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:44.220.247.152
姓名 林育田(Yu-Tian Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 製備超親水聚合膜在聚碳酸酯表面研究
(Characterization of Super-Hydrophilic Polymer Films on Polycarbonate Substrate)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來在親水塗層研究中,有一種表面具極端濕潤行為而被積極研究,即為超親水表面。當水滴滴附於超親水表面時,其水接觸角將小於10o,有助於使液體快速攤平,達到快速乾燥的優異性、除霧等特性。
本研究所製備之超親水聚合膜,先行使用電漿蝕刻聚碳酸酯表面,使其表面具有粗糙度,再利用有機矽烷做為單體進行電漿聚合反應,使親水自由基沉積於基板上。藉由調變蝕刻參數,如電漿電流、電壓與鍍製時間等,使表面極為粗糙且越粗糙之表面其上所含超親水官能基越多,可提升超親水持久性。在製備過程,使用光放射光譜儀作為即時監控電漿解離之情況,使單體擁有較高裂解出親水自由基的機率。經X射線光電子能譜儀分析超親水聚合膜之組成元素含量,其親水官能基具有最多含量,因此讓水接觸角小於10o,達到超親水效果。
在持久性方面,射出型聚碳酸酯基板之超親水持久性可達34天,而押出型聚碳酸酯基板可達39天。
摘要(英) In recent years, there is a kind of extreme wetting behavior on the surface of hydrophilic coating, which is the super hydrophilic surface. When the water droplets are attached to a super-hydrophilic surface, the water contact angle will be less than 10 degrees. It is helpful to make the water droplets spread quickly and achieve the excellent properties of fast drying and mist removal.
The aim of this study is to characterize the Super-Hydrophilic Polymer Films on Polycarbonate Substrate. First using oxygen and argon plasma to etch surface with roughness, and then using organic silane as the monomer for plasma polymerization .Finally hydrophilic free radicals deposited on the substrate. By adjusting the etching parameters, such as plasma current, voltage and deposition time, etc., making the surface extremely rough. The more rough the surface, the more hydrophilic functional on the surface, which can promote the persistence of super hydrophilic. In the preparation process, using optical emission spectrometer as a real-time monitoring of the plasma dissociation, so that the monomer has a higher probability of polymerize hydrophilic free radicals. The content of the constituent elements of the plasma polymerization film is analyzed by XPS, the hydrophilic functional has the most content, so the water contact angle is less than 10 degrees and achieves the super hydrophilic effect.
In terms of durability, the super hydrophilic durability of the injection molded PC substrate can be up to 34 days. The compression molding PC substrate can be up to 39 days.
關鍵字(中) ★ 超親水
★ 電漿聚合
★ 持久性
關鍵字(英)
論文目次 摘要 .......................................................................................................... ii
Abstract ...................................................................................................... vii
目錄 .......................................................................................................... x
第一章 緒論 ................................................................................................. 1
1-1前言..................................................................................................... 1
1-2研究動機 ............................................................................................ 3
1-3研究目的 ............................................................................................ 4
1-4研究內容 ............................................................................................ 4
第二章 基礎理論與文獻回顧 ................................................................. 6
2-1 電漿輔助化學氣象沉積 ................................................................... 6
2-1-1電漿基本原理 ............................................................................. 6
2-1-2低溫電漿表面處理 ................................................................... 11
2-1-3電漿聚合 ................................................................................... 13
2-1-4有機單體碎裂反應 ................................................................... 19
2-2 親水性介紹 ..................................................................................... 22
2-2-1濕潤現象和水接觸角 ............................................................... 22
xi
2-2-2楊氏方程式(Young’s Equation) ............................................... 22
2-2-3 Wenzel Model ........................................................................... 25
2-2-4 Aging 老化 ............................................................................... 26
第三章 實驗方法與儀器原理 ................................................................... 30
3-1 實驗方法 ......................................................................................... 30
3-1-1實驗流程 ................................................................................... 30
3-1-2實驗步驟 ................................................................................... 31
3-2鍍膜系統 ........................................................................................... 35
3-2-1有機單體 ................................................................................... 35
3-2-2離子濺射鍍膜系統 ................................................................... 36
3-3儀器原理及方法 ............................................................................... 39
3-3-1水接觸角量測儀 ....................................................................... 39
3-3-2原子力顯微鏡 ........................................................................... 39
3-3-3 X射線光電子能譜儀 ............................................................... 43
第四章 實驗結果與討論 ........................................................................... 46
4-1電漿電流和表面粗糙度關係 ........................................................... 46
4-2蝕刻時間和表面粗糙度關係 ........................................................... 48
4-3 離子源電壓和表面粗糙度關係 ...................................................... 50
4-4前處理電壓對水接觸角持久性之影響 ........................................... 54
4-5有機單體電壓對親水性與持久性之影響 ....................................... 56
4-6粗糙度對持久性影響 ....................................................................... 62
4-7超親水聚合膜之鍍製時間對持久性影響 ....................................... 64
第五章 結論 ............................................................................................... 68
參考文獻 ..................................................................................................... 69
參考文獻 [1] W. Barthlott, and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, vol. 202, no. 1, pp. 1-8, 1997.

[2] M. Trost, S. Schroder, T. Feigl et al., “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Applied Optics, vol. 50, no. 9, pp. C148-C153, 2011.

[3] P. Carcia, R. McLean, M. Reilly et al., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, 2003.

[4] S. K. Sethi, and G. Manik, “Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review,” Polymer-Plastics Technology and Engineering, pp. 1-21, 2018.

[5] H. Zhou, H. Wang, H. Niu et al., “Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating,” Advanced M1aterials, vol. 24, no. 18, pp. 2409-2412, 2012.

[6] H. Wang, Y. Xue, J. Ding et al., “Durable, self?healing superhydrophobic and superoleophobic surfaces from fluorinated?decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane,” Angewandte Chemie International Edition, vol. 50, no. 48, pp. 11433-11436, 2011.

[7] H. H. Ipekci, H. H. Arkaz, M. S. Onses et al., “Superhydrophobic coatings with improved mechanical robustness based on polymer brushes,” Surface and Coatings Technology, vol. 299, pp. 162-168, 2016.

[8] K. Guan, “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films,” Surface and Coatings Technology, vol. 191, no. 2-3, pp. 155-160, 2005.

[9] T. Otitoju, A. Ahmad, and B. Ooi, “Superhydrophilic (superwetting) surfaces: a review on fabrication and application,” Journal of Industrial and Engineering Chemistry, vol. 47, pp. 19-40, 2017.

[10] Terpilowski, K., et al. Changes in wettability of polycarbonate and polypropylene pretreated with oxygen and argon plasma. in Proceedings of the 8th International Conference MMT-20142. ed. by Rector, Head of the Materials Research Center, Ariel University, 2014.

[11] I. Langmuir, “Oscillations in ionized gases,” Proceedings of the National Academy of Sciences, vol. 14, no. 8, pp. 627-637, 1928.

[12] 國科會精密儀器發展中心, 真空技術與應用, 台灣: 全華圖書, 2004.03.24.

[13] e. B.Chapman, Glow Discharge Process, New York: John Wiley & Sons, 1980.

[14] 李洋汎, “冷電漿沉積及接枝聚合固定軟骨素改善鈦金屬表面的抗蝕性與細胞親和性,” 2013.

[15] 魏敬倫, “以反應性射頻磁控濺鍍搭配 HMDSO 電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究,” 國立中央大學, 2012.

[16] 楊順文, “電漿聚合碳氮層-TPX 複合膜應用於氧氮分離之研究,” 中原大學, 2002.

[17] 劉志宏, 陳志瑋, 張加強 et al., “簡介大氣電漿技術及產業應用,” 機械工業 September, no. 282, pp. p87-98, 2006.

[18] 堤井信力, “電漿應用技術的新發展,” 光連雙月刊, NO.102, 2012.11月.

[19] E. Adem, M. Avalos-Borja, E. Bucio et al., “Surface characterization of binary grafting of AAc/NIPAAm onto poly (tetrafluoroethylene)(PTFE),” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 234, no. 4, pp. 471-476, 2005.

[20] J. Li, M. Zhai, M. Yi et al., “Radiation grafting of thermo-sensitive poly (NIPAAm) onto silicone rubber1,” Radiation Physics and Chemistry, vol. 55, no. 2, pp. 173-178, 1999.

[21] J. Thiebaut, T. Belmonte, D. Chaleix et al., “Comparison of surface cleaning by two atmospheric pressure discharges,” Surface and Coatings Technology, vol. 169, pp. 186-189, 2003.

[22] F. Ohuchi, T. Lin, J. Antonelli et al., “Preparation and in-situ characterization of polycarbosilane thin films by dc plasma-enhanced deposition,” Thin solid films, vol. 245, no. 1-2, pp. 10-16, 1994.

[23] J.-S. Chang, P. A. Lawless, and T. Yamamoto, “Corona discharge processes,” IEEE Transactions on plasma science, vol. 19, no. 6, pp. 1152-1166, 1991.

[24] Y. Fukushima, C. Berge-Thierry, P. Volant et al., “Attenuation relation for West Eurasia determined with recent near-fault records from California, Japan and Turkey,” Journal of Earthquake Engineering, vol. 7, no. 04, pp. 573-598, 2003.

[25] G. Selwyn, H. Herrmann, J. Park et al., “Materials Processing Using an Atmospheric Pressure, RF?Generated Plasma Source,” Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001.

[26] A. Michelmore, P. Martinek, V. Sah et al., “Surface Morphology in the Early Stages of Plasma Polymer Film Growth from Amine?Containing Monomers,” Plasma Processes and Polymers, vol. 8, no. 5, pp. 367-372, 2011.

[27] R. T. Chen, B. W. Muir, L. Thomsen et al., “New insights into the substrate–plasma polymer interface,” The Journal of Physical Chemistry B, vol. 115, no. 20, pp. 6495-6502, 2011.

[28] H. Yasuda, Plasma Polymerization., Orlando: Academic Press, 1985.

[29] 楊士賢, “以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究,” 中原大學, 2005.

[30] H. Yasuda, “New insights into aging phenomena from plasma chemistry,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 515, no. 1-2, pp. 15-30, 2003.

[31] H. Yasuda, Luminous chemical vapor deposition and interface engineering, New York: Marcel Dekker, 2005.

[32] H. Yasuda, and T. Yasuda, “The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, no. 6, pp. 943-953, 2000.

[33] E. Lecoq, D. Duday, S. Bulou et al., “Plasma polymerization of APTES to elaborate nitrogen containing organosilicon thin films: influence of process parameters and discussion about the growing mechanisms,” Plasma Processes and Polymers, vol. 10, no. 3, pp. 250-261, 2013.
[34] H. Gau, S. Herminghaus, P. Lenz et al., “Liquid morphologies on structured surfaces: from microchannels to microchips,” Science, vol. 283, no. 5398, pp. 46-49, 1999.

[35] N. L. Abbott, J. P. Folkers, and G. M. Whitesides, “Manipulation of the wettability of surfaces on the 0.1-to 1-micrometer scale through micromachining and molecular self-assembly,” Science, vol. 257, no. 5075, pp. 1380-1382, 1992.

[36] S. Sorcar, A. Razzaq, H. Tian et al., “Facile electrochemical synthesis of anatase nano-architectured titanium dioxide films with reversible superhydrophilic behavior,” Journal of Industrial and Engineering Chemistry, vol. 46, pp. 203-211, 2017.

[37] B. Capillarity and Wetting Phenomena: Drops, Pearls, Waves, Pierre-Gilles de Gennes, Francoise Brochard-Wyart, David Quere (auth.), New York: Springer-Verlag, 2004.

[38] X. Feng, and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Advanced Materials, vol. 18, no. 23, pp. 3063-3078, 2006.

[39] R. J. Lipshutz, S. P. Fodor, T. R. Gingeras et al., “High density synthetic oligonucleotide arrays,” Nature genetics, vol. 21, no. 1s, pp. 20, 1999.

[40] J. Yuan, X. Liu, O. Akbulut et al., “Superwetting nanowire membranes for selective absorption,” Nature Nanotechnology, vol. 3, no. 6, pp. 332, 2008.

[41] T. Aytug, J. T. Simpson, A. R. Lupini et al., “Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films,” Nanotechnology, vol. 24, no. 31, pp. 315602, 2013.

[42] J. T. Park, J. H. Kim, and D. Lee, “Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings,” Nanoscale, vol. 6, no. 13, pp. 7362-7368, 2014.

[43] D. S. Kommireddy, A. A. Patel, T. G. Shutava et al., “Layer-by-layer assembly of TiO2 nanoparticles for stable hydrophilic biocompatible coatings,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 7, pp. 1081-1087, 2005.

[44] T. Shimizu, T. Goda, N. Minoura et al., “Super-hydrophilic silicone hydrogels with interpenetrating poly (2-methacryloyloxyethyl phosphorylcholine) networks,” Biomaterials, vol. 31, no. 12, pp. 3274-3280, 2010.

[45] N. Adam, “Use of the term ‘Young′s Equation’for contact angles,” Nature, vol. 180, no. 4590, pp. 809, 1957.

[46] E. Celia, T. Darmanin, E. T. de Givenchy et al., “Recent advances in designing superhydrophobic surfaces,” Journal of Colloid and Interface Science, vol. 402, pp. 1-18, 2013.

[47] 王姿妤, “含界面活性劑液滴在 SBSi 表面上的特殊行為,” 國立中央大學, 2017.

[48] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936.

[49] 蘇智偉, “光誘導氧化鋅薄膜之表面潤濕最佳化研究,” 臺北科技大學, 2014.

[50] A. Nakajima, K. Hashimoto, and T. Watanabe, "Recent studies on super-hydrophobic films," Molecular Materials and Functional Polymers, pp. 31-41: Springer, 2001.

[51] T. R. Gengenbach, and H. J. Griesser, “Compositional changes in plasma?deposited fluorocarbon films during ageing,” Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 26, no. 7, pp. 498-511, 1998.

[52] R. C. Chatelier, X. Xie, T. R. Gengenbach et al., “Quantitative analysis of polymer surface restructuring,” Langmuir, vol. 11, no. 7, pp. 2576-2584, 1995.

[53] 謝志尚, “六氟化硫電漿對軟性基材表面特性的影響,” 國立中山大學, 2008.

[54] 呂昭熠, “電漿化學氣相沉積poly-l-lysine薄膜之研究,” 中華大學, 2003.

[55] M. Vandenbossche, and D. Hegemann, “Recent approaches to reduce aging phenomena in oxygen-and nitrogen-containing plasma polymer films: An overview,” Current Opinion in Solid State and Materials Science, 2018.

[56] H. Biederman (Ed.), Plasma Polymer Films,, p.^pp. pp.13-24, London UK: Imperial College Press, 2004.

[57] S. Ligot, E. Bousser, D. Cossement et al., “Correlation Between Mechanical Properties and Cross?Linking Degree of Ethyl Lactate Plasma Polymer Films,” Plasma Processes and Polymers, vol. 12, no. 6, pp. 508-518, 2015.

[58] G. Reiter, M. Hamieh, P. Damman et al., “Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting,” Nature materials, vol. 4, no. 10, pp. 754, 2005.

[59] A. Ulman, Ultrathin Organic Films, California Academic Press San Diego, 1991.

[60] K. S. Siow, L. Britcher, S. Kumar et al., “Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization?a review,” Plasma processes and polymers, vol. 3, no. 6?7, pp. 392-418, 2006.

[61] M. Gueye, T. Gries, C. Noel et al., “Interaction of (3?Aminopropyl) triethoxysilane With Late Ar? N2 Afterglow: Application to Nanoparticles Synthesis,” Plasma Processes and Polymers, vol. 13, no. 7, pp. 698-710, 2016.

[62] B. W. Muir, S. L. Mc Arthur, H. Thissen et al., “Effects of oxygen plasma treatment on the surface of bisphenol A polycarbonate: a study using SIMS, principal component analysis, ellipsometry, XPS and AFM nanoindentation,” Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 38, no. 8, pp. 1186-1197, 2006.

[63] 黃俊欽教授. "高分子功能性薄膜 -技術資料(塑膠的加工性)."

[64] 黃俊欽教授, "高分子功能性薄膜 -技術資料(塑料物性介紹)," 國立高雄應用科技大學模具工程系

[65] "https://www.alfa.com/zh-cn/prodspec/A10668."

[66] “OECD SIDS CAS,” 經濟合作暨發展組織, vol. No. 919-30-2.

[67] "https://pubchem.ncbi.nlm.nih.gov/compound/13521 ".

[68] Y.-R. Luo, Comprehensive handbook of chemical bond energies: CRC press, 2007.

[69] Vecco Mark II? Fluid Cooled Ion SourceTechnical Manual.

[70] 李其紘, “原子力顯微鏡的基本介紹,” 國立臺灣科學教育館-科學研習月刊, No. 52, 2013.05

[71] 黃英碩, “掃描探針顯微術的原理及應用,” 科儀新知, no. 144, pp. 7-17, 2005.

[72] “Bruker AFM 使用說明書.”

[73] "http://dragon.ccut.edu.tw/~mejwc1/p-mea/content/ch_18.pdf."

[74] H. Hertz, “Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik, vol. 267, no. 8, pp. 983-1000, 1887.

[75] 林柏毅, “超親水電漿聚合薄膜之研究” 國立中央大學, 2017.

[76] A. Qureshi, S. Shah, S. Pelagade et al., "Surface modification of polycarbonate by plasma treatment." p. 012108.

[77] F. Palumbo, R. Di Mundo, D. Cappelluti et al., “Superhydrophobic and superhydrophilic polycarbonate by tailoring chemistry and nano?texture with plasma processing,” Plasma Processes and Polymers, vol. 8, no. 2, pp. 118-126, 2011.

[78] Y.-H. Ting, C.-C. Liu, S.-M. Park et al., “Surface roughening of polystyrene and poly (methyl methacrylate) in Ar/O2 plasma etching,” Polymers, vol. 2, no. 4, pp. 649-663, 2010.

[79] T. Chung, D. Nest, D. Graves et al., “Electron, ion and vacuum ultraviolet photon effects in 193 nm photoresist surface roughening,” Journal of Physics D: Applied physics, vol. 43, no. 27, pp. 272001, 2010.

[80] D. Nest, T. Chung, J. Vegh et al., “Role of polymer structure and ceiling temperature in polymer roughening and degradation during plasma processing: a beam system study of P4MS and PαMS,” Journal of Physics D: Applied Physics, vol. 43, no. 8, pp. 085204, 2010.

[81] C. M. Chan, Polymer surface modification and characterization, 1993.

[82] K. L. Mittal, and A. Pizzi, Adhesion promotion techniques: technological applications: CRC Press, 1999.

[83] J. Klemberg-Sapieha, L. Martinu, N. Yamasaki et al., “Tailoring the adhesion of optical films on polymethyl-methacrylate by plasma-induced surface stabilization,” Thin Solid Films, vol. 476, no. 1, pp. 101-107, 2005.

[84] S. Kitova, M. Minchev, and G. Danev, “RF plasma treatment of polycarbonate substrates,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 5, pp. 2607-2612, 2005.

[85] F. Sterpone, G. Stirnemann, J. T. Hynes et al., “Water hydrogen-bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups,” The Journal of Physical Chemistry B, vol. 114, no. 5, pp. 2083-2089, 2010.

[86] 梁文傑, “眾志成城的氫鍵化學鍵中的小矮人,” 化學, vol. 62, no. 1, pp. 43-58, 2004.
指導教授 郭倩丞 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明