博碩士論文 105226083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.116.36.192
姓名 蕭君育(Chun-Yu Hsiao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具耦合電漿子增強之可見光波段電漿子光偵測器
(Hot-Electron-Based, Coupled-Plasmon-Enhanced Plasmonic Photodetector at Visible Frequencies)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧
★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究★ 光波至混合電漿波導極化模態轉換器
★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換
★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換★ 適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析
★ 多原子層鋁膜中電子與聲子間之散射研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用數值模擬、實際製程與量測來設計並且探討具耦合電漿子增強之可見光波段電漿子光偵測器。以橫向磁場極化平面波入射利用粒子群聚演算法優化後所得具特殊旋轉角之二維奈米金屬四角柱光柵之元件結構,中間層鋁的吸收率相當地寬頻,在波長515 nm 至800 nm 超過50%,在波長588 nm 至693 nm 甚至超過60%。另外,此設計的光學特性在可見光波段對於入射光的極化角度不敏感。在和同尺寸之單純「氮化矽-鋁-二氧化鈦-銀」平板結構比較後,可知本研究所設計出之光電轉換元件之所以有高且寬頻的吸收,主要因為二維週期性奈米正四角柱結構產生光柵耦合,可在不同波長時激發中間層鋁上下兩介面之表面電漿子以及特定波長時的間隙電漿共振,導致中間層鋁吸收率增加。在二氧化鈦層中在波長400 nm 附近入射光在該層來回反射的相位差幾近2π,代表平面波在此層產生建設性干涉使得鄰近的中間層鋁吸收率大幅增加。
我們將設計出之電漿子光偵測器製作出來並量測於不同之入射光極化角度時之反射率頻譜以及單一極化角度時之電流─電壓圖。由量測結果可得元件對於入射光之極化角度不敏感,此結果與數值模擬相符於波長範圍458.82 nm 至614.55 nm 間,反射率對各極化角度的量測值皆低於20%。電性量測結果最佳之元件在入射光波長為638.9 nm,偏壓-1 V 情況下,光電流為428.7 μA/mm^2,其響應度為301.6 mA/W mm^2,外部量子效率為2.72047%,實驗結果皆遠高於文獻中於同波長下已發表之結果。
摘要(英) In this research, we investigate the hot-electron-based, coupled-plasmon-enhanced plasmonic photodetector at visible frequencies numerically and
experimentally. The absorptance in mid-Al film of the rotated nano-prisms grating architecture optimized by particle swarm optimization is higher than 50% which begins from the wavelength 515 nm to 800 nm, in addition, the absorptance in mid-metal film is even higher than 60% which begins from the wavelength 588 nm to 693 nm, it is very boardband. Moreover, the optical properties of the photodetector are polarization-independent in the visible region. Compared with the same size of planar structure, the high and boardband absorptance is based on the 2D periodic nano-quadrangular prisms which excite surface plasmon polaritons in the interfaces above and below mid-Al film and excite gap plasmon resonance. The absorptance peak around λ0=400 nm in mid-metal film is caused by constructive interference between the multiple reflections of light between the two reflecting surfaces in titanium dioxide layer.
We successfully fabricate the plasmonic photodetector. Later, we measure the reflectance spectrum with mutative polarized plane wave and the current-voltage curve with single polarized plane wave. From the measurement results, we can prove that the reflectance of photodetector is polarization-independent which result is same as simulation. The reflectance is lower than 20% which begins from the wavelength 458.82 nm to 614.55 nm. In the best electrical result of the measurement which is incident by wavelength 638.9 nm source and apply bias voltage -1 V, current under illumination is 428.7 μA/mm^2, responsivity is 301.6 mA/W mm^2$ and EQE is 2.72047$\%$. The measured results are higher than the references which have published in the same wavelength.
關鍵字(中) ★ 光偵測器
★ 熱電子
★ 內部光輻射
★ 表面電漿極化子
關鍵字(英) ★ photodetector
★ hot-electron
★ internal photoemission
★ surface plasmon polaritons
論文目次 中文摘要..................................................f
英文摘要..................................................g
謝誌......................................................h
目錄......................................................i
圖目錄....................................................j
表目錄....................................................s
一、緒論..................................................1
1.1前言...................................................1
1.2文獻回顧...............................................1
1.3研究動機...............................................8
二、背景理論.............................................11
2.1表面電漿共振之激發.....................................11
2.1.1金屬─介電質之單一介面之表面電漿極化子.................11
2.1.2金屬─介電質─金屬介面之表面電漿極化子..................13
2.1.3光柵耦合............................................15
2.1.4間隙電漿共振........................................15
2.2電磁場於有損材料內之能量吸收...........................18
2.3熱電子之生成..........................................19
2.4內部光輻射效應........................................19
2.5散射截面計算..........................................20
三、元件設計與特性分析....................................22
3.1元件結構與分析方法.....................................22
3.2數值結果之收斂性測試...................................23
3.3元件結構尺寸的優化.....................................24
3.4元件的分析............................................25
3.4.1光柵繞射階數與中間層鋁之吸收率峰值關係................30
3.4.2利用散射截面之概念尋找奈米金屬結構形成之間隙電漿共振...32
3.4.3利用散射截面之概念觀察奈米光柵形成之表面電漿極化子.....43
3.5平板結構和有上層奈米金屬結構之比較......................45
3.6氮化矽間隙、中間層鋁和二氧化鈦之厚度對於元件光學特性的影響.......................................................49
3.7優化所得具特殊旋轉角之奈米金屬四角柱設計和沒有
旋轉角之設計之比較........................................53
四、本元件製程與量測......................................57
4.1元件製程..............................................57
4.2量測與討論............................................61
4.2.1入射光極化角度對反射率頻譜之量測......................62
4.2.2電流─電壓量測.......................................65
五、結論.................................................70
參考文獻.................................................72
參考文獻 [1] C. Clavero, ``Plasmon-induced hot-electron generation at
nanoparticle/metal-oxide interfaces for
photovoltaic and photocatalytic devices,′′ Nat. Photonics, vol.8, no.2, pp. 95-103, Sep. 2014.
[2] M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, ``Continuous layer gap plasmon resonators,′′ Opt. Express, vol.19, no.20, pp. 19310-19322, Sep. 2011.
[3] H. Chalabi, D. Schoen, and M. L. Brongersma, ``Hot-electron photodetection with a plasmonic nanostripe antenna,′′ Nano Lett., vol.14, no.3, pp. 1374-1380, Mar. 2014.
[4] M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, ``Efficient absorption of visible radiation by gap plasmon resonators,′′ Opt. Express, vol.20, no.12, pp. 13311-13319, Jun. 2012.
[5] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, ``Photodetection with active
optical antennas,′′ Science, vol.332, no.6030, pp. 702-704, May 2011.
[6] J. Jung, T. S$phi$ndergaard, and S. I. Bozhevolnyi, ``Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface
plasmon polaritons,′′ Phys. Rev. B, vol.79, no.3, Jan. 2009.
[7] Y. Cui, Jun Xu, K. H. Fung, Y. Jin, A. Kumar, S. He,
and N. X. Fang, ``A thin film broadband absorber based on multi-sized nanoantennas,′′ Appl. Phys. Lett., vol.99, no.25, Dec. 2011.
[8] W. Li and J. Valentine, ``Metamaterial perfect absorber based hot electron photodetection,′′ Opt. Lett., vol.14, no.6, pp. 3510-3514, Jun. 2014.
[9] F. Wang, and N. A. Melosh, ``Plasmonic energy collection through hot carrier extraction,′′ Opt. Lett., vol.11, no.12, pp. 5426-5430, Dec. 2011.
[10] W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, ``Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,′′ Appl. Phys. Lett., vol.110, no.10, Mar. 2017.
[11] Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, ``A thin film broadband absorber based on multi-sized nanoantennas,′′ Appl. Phys. Lett., vol.99, no.25, Dec. 2011.
[12] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, ``Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,′′ Nat. Commun., vol.4, Mar. 2013.
[13] F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, ``Plasmonically enhanced hot electron based photovoltaic device,′′ Opt. Express, vol.21, no.6, pp. 7196-7201, Mar. 2013.
[14] K. Wu, Y. Zhan, S. Wu, J. Deng and X. Li, ``Surface-plasmon enhanced photodetection at communication band based on hot electrons,′′ J. Appl. Phys., vol.18, pp. 063101-063110, Aug. 2015.
[15] M. KarthickRaj, ``Polarization-insensitive two-dimensional periodic metallic absorbers in structured metal-insulator-metal configuration for plasmon-enhanced photoelectric conversion,′′ M.S. Thesis, Dept. Optics and Photonics, National Central Univ., Taoyuan, Taiwan, R.O.C. 2016.
[16] K. H. Shih, ``Theoretical investigations of solar energy conversion based on internal photoemission in metals,′′ M.S. thesis, Dept. Optics and Photonics, National Central Univ., Taoyuan, Taiwan, R.O.C. 2016.
[17] S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007.
[18] Available: https://reurl.cc/0zmnxY.
[19] A. D. Semenov, G. N. Gol′tsman, and R. Sobolewski, ``Hot-electron effect in superconductors and its applications for radiation sensors,′′ Supercond. Sci. Technol., vol.15, pp. R1-R16, Mar. 2002.
[20] R. H. Fowler, ``The analysis of photoelectric sensitivity curves for clean metals at various temperatures,′′ Phys. Rev., vol.38, no.1, pp. 45-56, Jul. 1931.
[21] J. Jung and T. Sondergaard, ``Green’s function surface integral equation method for theoretical analysis of scatterers
close to a metal interface,′′ Phys. Rev. B, vol.77, no.24, Jun. 2008.
[22] K. S. Yee, ``Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,′′ IEEE Trans. Antennas Propag., vol.14, no.3, pp. 302-307, May 1966.
[23] E. D. Palik, Handbook of Optical Constants I-III, Elsevier, Amsterdam, 1997.
[24] A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, ``Optical properties of metallic films for vertical-cavity optoelectronic devices,′′ Appl. Opt., vol.37, no.22, pp. 5271-5283, Aug. 1998.
[25] H. R. Philipp, ``Optical properties of silicon nitride,′′ J. Electrochim. Soc., vol.120, no.2, pp. 295-300, 1973.
[26] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, ``Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,′′ Adv. Opt. Mater., vol.4, no.11, pp. 1780-1786, Nov. 2016.
[27] Available: https://reurl.cc/zaj0Q.
[28] D. A. Neamen, Semiconductor Physics and Devices, 4th ed., McGraw-Hill, New York, 2012.
[29] J. Robertson, ``Band offsets of high dielectric constant gate oxides on silicon,′′ J. Non-Cryst. Solids, vol.303, no.1, pp. 94-100, May 2002.
指導教授 張殷榮 審核日期 2020-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明