博碩士論文 105226085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.91.4.56
姓名 鄭羽翔(Yu-Shiang Zheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 成長於(100)矽基板之P型倒置結構半極性氮化銦鎵奈米量子井應力分析
(Strain analysis on semipolar nanopyramidal InGaN quantum wells grown on (100) Si substrates)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 矽基板上的氮化鎵異質磊晶術★ 矽基板上的氮化物太陽能電池
★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層
★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝
★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體★ 強度敏感式影像橢圓儀及應用
★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井
★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響
★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討★ 氮化物表面電漿生醫感測之理論分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討磊晶應力對氮化銦鎵奈米量子井的光電特性影響。我們利用奈米異質磊晶術,將此奈米量子井成長於(100)矽基板上。為了降低磊晶層與矽基板之間的磊晶應力,我們先在矽基板表面,成長一層均勻分佈的氧化鋅奈米柱陣列,之後以有機金屬化學氣象沉積法成長氮化銦鎵量子井,再將此奈米量子井轉移至銀基板上,並探討量子井在基板轉移前後因應力改變所產生的光譜變化。

我們利用纖維鋅礦結構的氧化鋅材料與纖維鋅礦結構的氮化鎵材料之間較小的晶格差異,成功在(100)矽基板上成長出無裂痕的(10-11)面半極性氮化鎵六角椎金字塔型結構,並且利用氧化鋅奈米緩衝層在高溫磊晶時的擴散行為,產生自發性的P-型氮化鎵,以達成獨特的p-side down元件結構,希望能達到高發光效率的發光二極體。

本研究以不同流量的二茂鎂(Bis(cyclopentadienyl)-magnesium, Mg(C5H5)2): 40、80、120 sccm,在p -型氮化鎵產生不同的電洞濃度,藉以分析電洞濃度對磊晶應力及量子井發光效率的影響。

由於氮化物磊晶層與矽基板有極大的熱膨脹係數差異,在磊晶的過程中,會產生相當的晶格應力,此應力會降低量子井中的發光效率。此外,矽基板與氮化鎵磊晶層介面的反射率很低,也會降低發光二極體的外部量子效率。為了解決這兩大問題,我們將磊晶層轉移到銀基板上,再藉由移除矽基板,來釋放磊晶層中的應力。因為銀基板的具備高反射率,能有效提高量子井的光萃取效率。

根據掃描式電子顯微鏡的觀察、模擬軟體的分析、X光繞射儀以及拉曼光譜的量測,我們發現: 鎂摻雜量較少的樣本,展現較小的伸張應力,以及較佳的晶格品質因此具備較高的內部量子效率。
摘要(英) In this study, the effect of lattice strain before and after substrate transfer on the optoelectrionic properties of nanostructured InGaN quantum wells (QWs) structures was investigated. The nanostructure QWs were grown on (100) Si substrates by metal-organic chemical vapor deposition (MOCVD), employing ZnO nanorods as the buffer layer to release the huge stratin between Si and the nitride epilayer.

Using the small lattice mismatch between ZnO and GaN, we successfully grew the (10-11) semi-polar nanopyramidal QWs on the (100) Si substrate. The diffusion of Zn into GaN during the epitaxial growth also allows us to achieve the naturally formed p-type GaN, producing the desired p-side-down structure for QWs with enhanced interal quantum efficiency. During the growth, three different flow rates of Bis(cyclopentadienyl)-magnesium Mg(C5H5)2, i.e. 40, 80, and 120 sccm were adopted with the attempt to study the effect of p-type doping on the strain and the quantum efficiency of the QWs.

Due to the large thermal mismatch between the GaN epilayer and the Si substrate, huge lattice strain is expected in the epilayer after the MOCVD growth. The strain decreased the internal quantum efficiency of the InGaN QWs via the quantum-confinement Stark effect. The semipolar nanostructured QWs produced in this study are expected to exhibit improved radiative recombination efficiency becoause of the alleived QCSE. In addition, we transferred the epitaxial layer from the Si substrate to a silver substrate using a wet-etching technique, releasing the stress on the samples and increasing reflectivity at the epilayer/substrate interface. The released stress and enhanced interface reflectivity should lead to improved external quantum efficiency of the nanopyramidal QWs.

Scanning electron microscopy was used to observe the microstructure of the samples and a simulation software is used to analyze the relationship between the film thickness and the reflection wavelength. The samples were also characterized by x-ray diffraction (XRD) and Raman spectroscopy. According to these characterizations, it is found that the sample with less magnesium doping exhibits less tensile stress, and thus the higher internal quantum efficiency.
關鍵字(中) ★ 奈米異質磊晶術 關鍵字(英)
論文目次 摘要.............................................................................................................................. i
Abstract ..................................................................................................................... ii
誌謝............................................................................................................................ iii
目錄............................................................................................................................. v
圖目錄....................................................................................................................... vii
第一章、緒論 ........................................................................................................... ..1
1.1 前言 ..................................................................................................................... .1
1.2 發光二極體的基本性質 ..................................................................................... ..1
1.3 基板與材料特性 ................................................................................................. ..6
1.4 氧化鋅奈米異質磊晶應力緩衝層的應用 ...........................................................11
1.5 氮化鎵晶格結構與特性 ..................................................................................... 15
1.5.1 晶格結構.......................................................................................................... 15
1.5.2 極化效應.......................................................................................................... 16
1.5.3 極化效應之影響.............................................................................................. 23
第二章、實驗原理方法儀器與製程 ........................................................................ 25
2.1 能帶圖模擬 ....................................................................................................... 25
2.1.1 發光二極體能帶圖模擬.................................................................................. 25
2.1.2 發光二極體電子電洞濃度圖模擬................................................................... 29
2.1.3 內部量子效率( Internal quantum efficiency , IQE)模擬 ................................31
2.2 以X-射線繞射分析晶格應力原理 ...................................................................... 33
2.2.1 布拉格定律...................................................................................................... 33
2.2.1 布拉菲點陣理論.............................................................................................. 34
2.3 以拉曼光譜判斷材質應力之原理 ...................................................................... 35
2.4 光激發螢光頻譜原理 ......................................................................................... 37
2.5 製程及量測儀器介紹 ......................................................................................... 37
2.5.1 射頻磁控濺鍍系統.......................................................................................... 37
2.5.2 有機金屬化學氣相沉積系統........................................................................... 39
2.5.3 熱蒸鍍系統( Thermal evaporation system) ................................................. 40
2.5.4 X-射線繞射分析( X-ray diffraction analysis, XRD) ........................................ 40
2.5.5 掃描式電子顯微鏡.......................................................................................... 42
2.5.6 拉曼光譜量測系統.......................................................................................... 43
2.6 樣本結構設計 .................................................................................................... 44
第三章、實驗分析與討論 ....................................................................................... 46
3.1 樣本能帶圖模擬 ................................................................................................ 46
3.2 樣本製程步驟 .................................................................................................... 49
3.3 以SEM、Essential Macleod分析樣本 .............................................................. 64
3.4 以XRD分析樣本所受應力 .................................................................................. 87
3.5 以拉曼光譜分析樣本應力 ................................................................................. 93
3.6 以光致激發螢光光譜分析樣本應力 .................................................................. 97
第四章、結論與未來展望 ..................................................................................... 101
4.1 結論 ................................................................................................................. 101
4.2 未來展望 .......................................................................................................... 102
參考文獻 ................................................................................................................ 103
參考文獻 [1] H. J. Round,"A note on Carborundum,"Electrical world,Vol 49,pp.309-310,(1907).
[2] H.Welker, “über neue halbleitende Verbindungen” Zeitschrift für Naturforschung A, Vol 7, Issue 11, pp.744-749, (1952).
[3] Nick Holonyak Jr. and S.F. Bevacqua1, “Coherent (visible) light emission from Ga(As1-xPx) junctions” Appl. Phys. Lett. Vol. 1, pp. 82-83, (1962).
[4] C. J. Nuese, J. J. Tietjen, J. J. Gannon and H. F. Gossenberger ,“Optimization of Electroluminescent Efficiencies for Vapor‐Grown GaAs1−xPx Diodes” J. Electrochem., Soc. Vol 116, pp. 248-253, (1969).
[5] H. Amano, N. Sawaki and I. Akasaki ,“Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer” Appl. Phys. Lett., Vol. 48, pp.353, (1986).
[6] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki,“P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)” Jpn. J. Appl. Phys., Vol 28, pp. L2112-L2114, (1989).
[7] S. Nakamura, Takashi Mukai, Masayuki Senoh and Naruhito Iwasa,“Thermal annealing effects on p-type Mg-doped GaN films,”Jpn. J. Appl. Phys., Vol 31, pp.139-142, (1992).
[8] E. F. Schubert,“Light-Emitting Diodes,2nd ed. (Cambridge University Press,Cambridge) ”, (2006).
[9] Justin Iveland, Lucio Martinelli, Jacques Peretti,James S. Speck, and Claude Weisbuch,“Auger effect identified as main cause of efficiency droop in LEDs” SPIENewsroom , (2014).
[10] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-base light-emitting diodes” Appl. Phys. Lett. 91, no. 18, pp. 183507-1-183507-3, (2007).
[11] K. B. Nam, M. K. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence” Appl. Phys. Lett., vol. 83, no. 5, pp. 878-880, (2003).
[12] N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk and Y. G. Shreter, “Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes” Appl. Phys. Lett., vol. 96, no. 13, pp. 133502-1-133502-3, (2010).
[13] Y. C. Shen, G. O. Mueller, S. Wananabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence” Appl. Phys. Lett., vol. 91, no. 14, pp. 141101-1-141101-3, (2007).
[14] J Xie, X Ni, Q Fan, R Shimada, Ümit Özgür and Hadis Morkoç,“On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,”Appl. Phys. Lett,vol.93,no.12,pp. 121107-1-121107-3, (2008).
[15] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 1, pp. 011113-1-011113-3, (2009).
[16] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park,“Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,”Appl.Phys. Lett., vol.93,no. 4,, pp. 041102-1-041102-3,(2008).
[17] N. F. Gardnera, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, no. 24, pp. 243506-1-243506-3, (2007).
[18] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys., vol. 101, no. 3, pp. 033104-1-033104-5, (2007).
[19] M. Miyoshi, A. Watanabe, T. Egawa, “Modeling of the wafer bow in GaN-on-Si epiwafers employing GaN/AlN multilayer buffer structures”, Semicond. Sci. Technol., vol. 31, no. 10, pp. 105016-1-105016-7, (2016).
[20] S. Zamir, B. Meyler, and J. Salzman “Reduction of cracks in GaN films grown on Si-on-insulator by lateral confined epitaxy”, J. Crystal Growth 243, 375, (2002).
[21] Ayers,John E, “Heteroepitaxy of semiconductors”,p164, (2007).
[22] Michael E. Levinshtein, Sergey L. Rumyantsev and Michael S. Shur, “PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS”.p3, (2001).
[22] Katsuhiko Inaba, “General features of GaN-related materials” , Rigaku Journal,30(1), (2014).
[23] Chen-Fu Chu, Fang-I Lai, Jung-Tang Chu, Chang-Chin Yu, Chia-Feng Lin,
Hao-Chung Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique” , Journal of Applied Physics 95, 3916, (2004).
[24] Michael E. Levinshtein, Sergey L. Rumyantsev and Michael S. Shur,
“PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS”.p95, (2001).
[25] Sichel, E.K., Pankove J.I., “Thermal conductivity of GaN25-360 K”, J. Phys. Chem. Solids 38, 3, 330, (1977).
[26] J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kolbas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. 71, 2572, (1997).
[27] BAKHTIAR UL HAQ, A. AFAQ, R. AHMED and S. NASEEM, “A COMPREHENSIVE DFT STUDY OF ZINC OXIDE IN DIFFERENT PHASES ”, Modern Physics C,Vol. 23, No. 6 ,1250043, (2012).
[28] E. Fred Schubert, “Light-Emitting Diodes ”, 3rd edition, (2006).
[29] G. T. Chen et al,Appl. Phys. Lett.49 140, (1986).
[30] Guan-Ting Chen , Chia-Hua Chan , Chia-Hung Hou , Hsueh-Hsing Liu , Nai-Wei Shiu , Mao-Nan Chang , Chii-Chang Chen , and Jen-Inn Chyi, “Epitaxial lateral overgrowth of GaN on AlGaN/(111)Si micropillar array fabricated by polystyrene microsphere lithography”, Proc. of SPIE Vol. 6894 689408, (2008).
[31] D Zhu, D J Wallis and C J Humphreys, “Prospects of III-nitride optoelectronics grown on Si”, Rep. Prog. Phys. ,vol 76 ,pp.106501, (2013).
[32] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang and J. Xu, “Nanoheteroepitaxial growth of GaN on Si nanopillar arrays”, J. Appl. Phys. 97,124308, (2005).
[33] Hongbo Qin, Xinghe Luan, Chuang Feng, Daoguo Yang and Guoqi Zhang, “Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals”, MDPL,Materials, 10, 1419, (2017).
[34] Yoshitaka Taniyasu and Makoto Kasu, “Improved Emission Efficiency of 210-nm Deep-ultraviolet Aluminum Nitride Light-emitting Diode”, Special Feature. Vol. 8 No., (2010).
[35] C. Wetzel,M. Zhu,J. Senawiratne,T. Detchprohm,P.D. Persans ,L. Liu,E.A. Preble, D. Hanser, “Light-emitting diode development on polar and non-polar GaN
substrates”, Journal of Crystal Growth, Volume 310, Issue 17, (2008).
[36] Houqiang Fu, Zhijian Lu, and Yuji Zhao, “Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect”, AIP ADVANCES 6, 065013, (2016).
[37] Christof Mauder, “Physics, MOVPE growth, and investigation of m-plane GaN films and InGaN/GaN quantum wells on γ-LiAlO2 substrates”, (2012).
[38] X. Li,X. Ni, J. Lee, M. Wu, Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland,and K. R. Evans, “Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes”, APL, 95, 121107, (2009).
[39] A. E. Romanov,a T. J. Baker, S. Nakamura, and J. S. Speckb, “Strain-induced polarization in wurtzite III-nitride semipolar layers”, Appl. Phys. 100, 023522, (2006).
[40] R. Sharma,P. M. Pattison,H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3 )InGaN/GaN green light emitting diode”, Appl 87, 231110, (2005).
[41] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman,R. Dimitrov, L. Wittmer, and M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, Appl. phys. 85,3222, (1999).
[42] Hadis Morkoç, “ Nitride Semiconductors and Devices”, (2009).
[43] Hongbo Qin , Xinghe Luan , Chuang Feng , Daoguo Yang and Guoqi Zhang, “Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals ”,Materials, 10, 1419, (2017)
[44]D. A. B. Miller, D. S. Chemia, and T.C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect ”,Phys. Rev. Lett. 53,2173, (1984).
[45] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers ”,Appl ,Physics, 100(2), (2006).
[46] Fabio Bernardini, Vincenzo Fiorentini and David Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, The American Physical Society, PHYSICAL REVIEW B, (1997).
[47] M. L. Reed, E. D. Readinger, Shen, Wraback, Syrkin, Usikov, V. Kovalenkov and V. A. Dmitriev, “n-ingan/p-gan single heterostructure light emitting diode with p-side down”, Appl, Phys, 93,133505, (2008).
[48] O. Madelung, “Semiconductors; data handbook ”, (2003).
[49] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide and K. Manabe, “Thermal stress in gan epitaxial layers grown on sapphire substrates.”, Appl. Phys. Lett. Vol. 77,pp. 4389-4392, (1995).
[50] T. Matsuoka, Y. Kobayahi, H. Takahata, T. Mitate, S. Mizuno, A. Sasaki, M. Yoshimoto, T. Ohnishi and M. Sumiya, “N-polar GaN on sapphire substrate grown by MOVPE”, Phys. Stat. Sol. ,vol.243, no. 7,pp. 1446-1450, (2006).
[51] B. Daudin, J. L. Rouviere and M. Arlery, “Polarity determination of GaN films by ion channeling and convergent beam electron diffraction”, Appl. Phys. Lett, Vol. 69, no. 17, pp. 2480-2482, (1996).
[52] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, “Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire ”,Appl. Phys. Lett, Vol. 71, no. 18., pp. 2635-2637, (1997).
[53] S. Bensmaine, L. Le Brizoual, O. Elmazria, B. Assouar and B. Benyoucef,” The effects of the deposition parameters of ZnO thins films on their structural properties”, Electron Devices, vol. 5, pp. 104-109, ( 2007).
[54] 陳建嘉,”Nanoheteroepitaxial growth of GaN on Si substrates”, National Central University, Master′s Thesis, (2013).
[55] N. Li, “GaN on ZnO: A NEW APPROACH TO SOLID STATE LIGHTING”, Georgia Institute of Technology, (2009).
[56] M. Grunze, W. Hirschwald and D. Hofmann,”Zinc OXIDE: SURFACE STRUCTURE, STABILITY, AND MECHANISMS OF SURFACE REACTIONS” J. Cryst. Growth Vol 52, pp. 241-249, (1981).
[57] Francisco Solís-Pomar, Eduardo Martínez, Manuel F Meléndrez and Eduardo Pérez Tijerina,” Growth of vertically aligned ZnO nanorods using textured ZnO films”, Nanoscale Res. Lett., Vol 6, pp. 524 , (2011).
[58] Shih-Wei Chen and Jenn-Ming Wu,” Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method”, Acta Materialia., Vol 59, pp. 841–847, (2011).
[59] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks and R. P. H. Chang,“Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions“, Chem. Mater., Vol 17, pp. 1001-1006, (2005).
[60] Hiroaki Fukushima, Tomomi Kozu, Hiromi Shima, Hiroshi Funakubo, Hiroshi Uchida, Takashi Katod and Ken Nishida,“ Evaluation of oxygen vacancy in ZnO using Raman spectroscopy “,IEEE, (2015).
[61] Michael E. Levinstin, Sergey L. Rumyyantsev, Michael S. Shur,“PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS GaN, AlN, InN, BN, SiC, SiGe “, (2001).
[62] Ali Vazinishayan, Shuming Yang, Dasaradha Rao Lambada and Yiming Wang,“Mechanical behavior enhancement of ZnO nanowire by embedding
different nanowires“, Results in Physics 9, (2018).
指導教授 賴昆佑 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明