博碩士論文 105232012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.83.236.51
姓名 丘耀斌(Yao-Bin Chiu)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 聚合物共混層發光二極體應用於電激發偏極子元件之研究
(Polymer-blend based electrically pumped polariton device)
相關論文
★ 螢光材料應用於電激發有機偏極子元件之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-11以後開放)
摘要(中) 本論文主要研究PFO:F8BT based OLED作為光子源應用於電激發偏極子元件。首先我們優化OLED的電子注入端進而提升外部量子效率(EQE)近2%作為光子源與提供激子的高吸收染料分子DEDOC強耦合產生偏極子,接著以intra-cavity pumping的共振腔架構設計偏極子元件,其機制為激發強耦合能態,而光子源與吸收層之間以絕緣層隔絕限制電流只通過OLED,在此架構下可替換不同波長之光子源並適當調整腔長優化偏極子元件的效率。
實驗結果證明,當F8BT的放光接近激子能態,於EL光譜中同時觀察到不同偏極子的放光。此研究有助於理解強耦合的物理並發展低閥值雷射。
摘要(英) In this thesis, the PFO:F8BT based OLED was applied to electrically pumped organic polariton device as optical pumping source.We optimized the electron injection to increace external quantum efficiency(EQE) of OLED by nearly 2% as a pumping source and strongly couple the highly absorption dye.The polariton device is designed with the intra-cavity pumping. The mechanism is to excite the strong coupling energy state.We Use insulation separate OLED and active layer,leading to the current only flow past OLED.Under this architecture,it is possible to replace pumping sources of different wavelengths and adjust the cavity length to optimize the current density and EQE of the polariton device.
The result shows that when the emission of F8BT is nearly to the exciton reservior,the emission of exciting the upper branch and the lower branch can be observed .This research result will promote to understand physical mechanism of polariton and advance low threshold polariton laser.
關鍵字(中) ★ 聚合物共混層
★ 偏極子元件
關鍵字(英) ★ Polymer-blend based
★ polariton device
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 聚合物共混發光二極體 1
1-2 偏極子(Polariton) 3
1-3 偏極子雷射 4
1-3-1 Lidzey組 - Non-resonant pumping 與 Bottleneck 4
1-3-2 Bulovic組 - Intracavity pumping 7
1-4 研究動機 9
第二章 理論分析 11
2-1 有機發光二極體理論 11
2-1-1 有機發光二極體結構 11
2-1-2 載子注入 12
2-1-3 主體(Host)與客體(Guest)間的能量轉移(Host-guest energy transfer) 15
2-1-4 量子效率(Quantum Efficiency) 17
2-2 多層膜矩陣設計理論 18
2-2-1 正向入射 18
2-2-2 斜向入射 19
2-2-3 非相干性之反射與透射 20
2-3 電場分布 22
2-3-1 導納軌跡 22
2-3-2 電場分布 24
2-4 微共振腔之光場模態與色散關係 25
2-5 微共振腔中光子與激子的強耦合 27
2-5-1 強耦合與哈密頓算符(Hamiltonian) 27
2-5-2 哈密頓算符(Hamiltonian)矩陣與偏極子能態 31
第三章 實驗製程與步驟 34
3-1 製程儀器 35
3-1-1 旋轉塗佈(Spin coating)與dip 製程 35
3-1-2 熱蒸鍍系統(Thermal coater) 36
3-2 量測儀器 37
3-2-1 半導體參數分析儀(Semiconductor Parameter Analyzer, SPA)與Photodiode 37
3-2-2 即時多角度量測系統 38
3-3-3 光譜儀系統 39
3-3 實驗步驟 42
3-4 材料明細 45
第四章 實驗結果與討論 47
4-1 J-aggregate高吸收強耦合材料DEDOC 47
4-2 Polymer-blend based光子源效率優化與微共振腔設計 48
4-2-1 正向結構(Conventional structure) 49
4-2-2 倒置結構(Inverted structure) 51
4-2-3 偏極子元件設計 57
4-3 偏極子元件量測結果與討論 60
第五章 結論與未來展望 65
參考文獻 67
參考文獻 [1] Hassan, M. U., et al. "Charge trap assisted high efficiency in new polymer-blend based light emitting diodes." Nano energy 21 (2016): 62-70.).
[2] Granström, Magnus, and Olle Inganäs. "White light emission from a polymer blend light emitting diode." Applied Physics Letters 68.2 (1996): 147-149.
[3] Deng, Hui, Hartmut Haug, and Yoshihisa Yamamoto. "Exciton-polariton bose-einstein condensation." Reviews of Modern Physics 82.2 (2010): 1489.
[4] Kasprzak, Jacek, et al. "Bose–Einstein condensation of exciton polaritons." Nature 443.7110 (2006): 409.
[5] Weisbuch, Claude, et al. "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity." Physical Review Letters 69.23 (1992): 3314.
[6] Lidzey, David G., et al. "Strong exciton–photon coupling in an organic semiconductor microcavity." Nature 395.6697 (1998): 53.
[7] Lidzey, D. G., et al. "Room temperature polariton emission from strongly coupled organic semiconductor microcavities." Physical review letters 82.16 (1999): 3316.
[8] Coles, David M., et al. "Vibrationally Assisted Polariton‐Relaxation Processes in Strongly Coupled Organic‐Semiconductor Microcavities." Advanced Functional Materials 21.19 (2011): 3691-3696.
[9] Christogiannis, Nikolaos, et al. "Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED." Advanced Optical Materials 1.7 (2013): 503-509.
[10] Coles, David M., et al. "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities." Physical Review B 88.12 (2013): 121303.
[11] Coles, David M., et al. "Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity." Nature materials 13.7 (2014): 712.
[12] Coles, David M., et al. "Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode." Nature communications 5 (2014): 5561.
[13] Rajendran, Sai K., et al. "Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity." Physical Review B 91.20 (2015): 201305.
[14] Paschos, G. G., et al. "Hybrid organic-inorganic polariton laser." Scientific Reports 7.1 (2017): 11377.
[15] Flatten, Lucas C., et al. "Electrically tunable organic–inorganic hybrid polaritons with monolayer WS 2." Nature communications 8 (2017): 14097.
[16] D. ¬Comoretto, "Organic and Hybrid Photonic Crystals", Switzerland: Springer, 2015, P.243-272.
[17] Akselrod, Gleb M., et al. "Lasing through a strongly-coupled mode by intra-cavity pumping." Optics express 21.10 (2013): 12122-12128.
[18] Bradley, M. Scott, and Vladimir Bulović. "Intracavity optical pumping of J-aggregate microcavity exciton polaritons." Physical Review B 82.3 (2010): 033305.
[19] Matsushima, Toshinori, Yoshiki Kinoshita, and Hideyuki Murata. "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers." Applied Physics Letters 91.25 (2007): 253504.
[20] Lee, Hyunbok, et al. "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces." Applied Physics Letters 93.4 (2008): 279.
[21] Hung, L. S., Ching Wan Tang, and Monica Gary Mason. "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode." Applied Physics Letters 70.2 (1997): 152-154.
[22] Simmons, J. G. "Richardson-Schottky effect in solids." Physical Review Letters 15.25 (1965): 967.
[23] Vacca, Paolo, et al. "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance." The Journal of Physical Chemistry C 111.46 (2007): 17404-17408.
[24] Fowler, Ralph Howard, and Lothar Nordheim. "Electron emission in intense electric fields." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 119.781 (1928): 173-181.
[25] Heeger, Alan J., Ian D. Parker, and Yang Yang. "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling." Synthetic Metals 67.1-3 (1994): 23-29.
[26] Small, Cephas E., et al. "Origin of enhanced hole injection in inverted organic devices with electron accepting interlayer." Advanced Functional Materials 22.15 (2012): 3261-3266.
[27] 陳金鑫,黃孝文, "OLED:有機電激發光材料與元件", 初版, 台北市:五南, 2007, P.23-24.
[28] Yokoyama, Daisuke, Masato Moriwake, and Chihaya Adachi. "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films." Journal of Applied Physics 103.12 (2008): 123104.
[29] 李正中, 薄膜光學與鍍膜技術(第八版), 新北市:藝軒圖書出版社, (2016).
[30] Hayashi, Shinji, Yuta Ishigaki, and Minoru Fujii. "Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities." Physical Review B 86.4 (2012): 045408.
[31] Jokinen, Karoliina, et al. "Light Emission Color Conversion of Polyfluorene-Blend OLEDs Induced by Thermal Annealing." IEEE Transactions on Electron Devices 62.7 (2015): 2238-2243.
[32] Kabra, Dinesh, et al. "Efficient Single‐Layer Polymer Light‐Emitting Diodes." Advanced Materials 22.29 (2010): 3194-3198.
[33] Lu, Li Ping, Dinesh Kabra, and Richard H. Friend. "Barium Hydroxide as an Interlayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light‐Emitting Diodes." Advanced Functional Materials 22.19 (2012): 4165-4171.
[34] Lu, Li Ping, Chris E. Finlayson, and Richard H. Friend. "A study of tin oxide as an election injection layer in hybrid polymer light-emitting diodes." Semiconductor Science and Technology 29.12 (2014): 125002.
[35] Kim, Nam-Koo, et al. "Solution-processed barium salts as charge injection layers for high performance N-channel organic field-effect transistors." ACS applied materials & interfaces 6.12 (2014): 9614-9621.
[36] 林成之, “有機染料分子薄膜之光電特性研究”, 碩士,光電科學與工程學系,國立中央大學,桃園市(2014).
[37] 許家福, “電激發有機偏極子元件之研究”, 碩士,光電科學與工程學系,國立中央大學,桃園市(2016).
[38] 洪舜昱, “即時多角度光譜量測系統結合電致發光、光致發光及反射率量測”, 碩士,光電科學與工程學系,國立中央大學,桃園市(2016).
[39] Tischler, Jonathan R., et al. "Strong coupling in a microcavity LED." Physical review letters 95.3 (2005): 036401.
指導教授 張瑞芬 簡汎清(Jui-Fen Chang Fan-Ching Chien) 審核日期 2019-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明