博碩士論文 105232014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.144.75.212
姓名 利映澤(Ying-Tse Li)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 探討利用射頻磁控濺鍍形成的鍺島之生長機制
(The growth mechanism of Ge islands by RF magnetron sputtering systems)
相關論文
★ 偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究★ 高功率脈衝磁控濺鍍技術鍍製高硬度光學多 層膜的研究
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-31以後開放)
摘要(中) 本論文將使用射頻磁控濺鍍進行薄膜沉積並結合後退火製程,作為主要的實驗方法。島狀形成的成因主要是利用鍺材料與矽材料之間的晶格常數差異。鍺材料在特定的生長條件下,將會由二維結構逐漸轉變為三維結構,並藉由以下變因來探討鍺島的生長機制,其中包括了後退火的方式、後退火的溫度、後退火的持溫時間、濺鍍功率以及鍺薄膜沉積在不同材料上等差異,之後並針對這些自我組裝形成的島狀結構進行拉曼光譜、原子力顯微鏡、掃描式電子顯微鏡等進行分析。
本實驗採用射頻磁控濺鍍是因為相較於其他已知可行的製程較為便宜,如,分子束磊晶,化學氣相沉積等,且製程材料不具有毒氣體也較為穩定,因此在往後應用在商業用途上將會是一大關鍵。
摘要(英) In this thesis, we have used RF magnetron sputtering systems and post-annealing process as primary experiment method. The formation of Ge islands is based on the difference in lattice constants between Si and Ge. These Ge films would transform their morphology from 2-dimension to 3-dimension, by controlling the following parameters to study their growth mechanism, such as, post-annealing method, post-annealing temperature, post-annealing soaking time, the sputtering power and with or without the interlayer. Then, we have analyzed these Ge islands by Raman spectrum, atomic force microscopy (AFM) and scanning electron microscopy (SEM).
The RF magnetron sputtering is used in this experiment because it is cheaper than other processes, such as molecular beam epitaxy, chemical vapor deposition, etc., and its raw materials are non-toxic and stable. Therefore, it will be one of the key processes in the production for the commercial applications.
關鍵字(中) ★ 濺鍍
★ 鍺島
關鍵字(英) ★ Sputtering
★ Ge island
論文目次 Chapter 1. Introduction 1
1.1. Background 1
1.2. Paper review 2
The advantage of Ge thin films growth 2
The fabrication of Ge and SiGe micro-structures 4
The application of Si and Ge with micro-structures 6
1.3. Motivation 8
Chapter 2. Theory and Operation Principle 9
2.1. Sputtering system 9
2.2. Annealing theory 10
2.3. Mechanisms of Stranski–Krastanov growth 10
2.4. The Principle of Raman spectrum 11
2.5. The Principle of Scanning Electron Microscopy (SEM) 12
2.6. The Principle of Atomic Force Microscopy (AFM) 13
Basic Operation Principles 13
Operation Modes 14
2.7. The phase change of Atomic Force Microscopy 15
The Force Verse Distance 15
The Spring Constant and Phase angle 16
Chapter 3. Experiment equipment and Process 17
3.1. Cluster sputtering system 17
3.2. The Heat Treatment System 18
3.3. Raman system 19
3.4. Atomic force microscopy 20
3.5. Scanning Electron microscopy 21
3.6. Experiment Process 22
Sample Cleaning Process 22
Thin Films Fabrication 23
The Island Structure Formation 23
Chapter 4. Result and Discussion 25
4.1. RTA Process 25
4.2. Annealing Temperature 33
4.3. Annealing Time 39
4.4. The sputtering power of deposited films 43
4.5. Interlayer 53
Chapter 5. Conclusion and Future work 67
Reference 69
參考文獻 [1] M. Yamaguchi, T. Takamoto, and K. Araki, "Super high-efficiency multi-junction and concentrator solar cells," Solar energy materials and solar cells, vol. 90, pp. 3068-3077, 2006.
[2] D. Buca, S. Winnerl, S. Lenk, S. Mantl, and C. Buchal, "Metal–germanium–metal ultrafast infrared detectors," Journal of applied physics, vol. 92, pp. 7599-7605, 2002.
[3] A. Baharin and M. Hashim, "Study of electrical characteristics of Ge islands MSM photodetector structure grown on Si substrate using conventional methods," Semiconductor science and technology, vol. 22, p. 905, 2007.
[4] S. Sahni, X. Luo, J. Liu, Y.-h. Xie, and E. Yablonovitch, "Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator," Optics Letters, vol. 33, pp. 1138-1140, 2008/05/15 2008.
[5] T. Asar and S. Özçelik, "Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization," Superlattices and Microstructures, vol. 88, pp. 685-694, 2015.
[6] H. Liu, P. Wang, D. Qi, X. Li, X. Han, C. Wang, et al., "Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height," Applied Physics Letters, vol. 105, p. 192103, 2014.
[7] O. G. Schmidt and K. Eberl, "Self-assembled Ge/Si dots for faster field-effect transistors," IEEE Transactions on Electron Devices, vol. 48, pp. 1175-1179, 2001.
[8] O. G. Schmidt, U. Denker, M. Dashiell, et al., "Laterally aligned Ge/Si islands: a new concept for faster field-effect transistors," Materials Science and Engineering: B, vol. 89, pp. 101-105, 2002.
[9] P. Verheyen, N. Collaert, R. Rooyackers, et al., "25% drive current improvement for p-type multiple gate FET (MuGFET) devices by the introduction of recessed Si/sub 0.8/Ge/sub 0.2/ in the source and drain regions," in Digest of Technical Papers. 2005 Symposium on VLSI Technology, pp. 194-195, 2005.
[10] J. Liu, R. Camacho-Aguilera, J. T. Bessette, et al., "Ge-on-Si optoelectronics," Thin Solid Films, vol. 520, pp. 3354-3360, 2012.
[11] J. Michel, J. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nature Photonics, vol. 4, pp. 527, 2010.
[12] S. O. Kasap and R. K. Sinha, Optoelectronics and photonics: principles and practices vol. 340: Prentice Hall New Jersey, 2001.
[13] Z. Liu, X. Hao, A. Ho-Baillie, C.-y. Tsao, and M. A. Green, "Cyclic thermal annealing on Ge/Si (100) epitaxial films grown by magnetron sputtering," Thin Solid Films, vol. 574, pp. 99-102, 2015.
[14] N. Zangenberg, J. L. Hansen, J. Fage-Pedersen, and A. N. Larsen, "Ge self-diffusion in epitaxial Si 1− x Ge x layers," Physical Review Letters, vol. 87, pp. 125901, 2001.
[15] J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and K. L. Wang, "Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si(001)," Applied Physics Letters, vol. 78, pp. 1763-1765, 2001.
[16] G. Katsaros, M. Stoffel, A. Rastelli, O. Schmidt, K. Kern, and J. Tersoff, "Three-dimensional isocompositional profiles of buried Si Ge∕ Si (001) islands," Applied physics letters, vol. 91, pp. 013112, 2007.
[17] M. Leite, G. Medeiros-Ribeiro, T. Kamins, and R. S. Williams, "Alloying mechanisms for epitaxial nanocrystals," Physical review letters, vol. 98, pp. 165901, 2007.
[18] S.-W. Lee, H.-T. Chang, J.-K. Chang, and S.-L. Cheng, "Formation mechanism of self-assembled Ge/Si/Ge composite islands," Journal of The Electrochemical Society, vol. 158, pp. H1113-H1116, 2011.
[19] K. Das, M. Goswami, A. Dhar, B. Mathur, and S. Ray, "Growth of Ge islands and nanocrystals using RF magnetron sputtering and their characterization," Nanotechnology, vol. 18, pp. 175301, 2007.
[20] S. Alireza, Z. Othaman, S. K. Ghoshal, and F. Ahmadi, "Self-assembled Ge/Si nanoislands: effect of argon flow and radio frequency power," Physica Scripta, vol. 89, pp. 025804, 2014.
[21] S. Ke, S. Ye, J. Yang, Z. Wang, C. Wang, and Y. Yang, "Morphological evolution of self-assembled SiGe islands based on a mixed-phase pre-SiGe island layer grown by ion beam sputtering deposition," Applied Surface Science, vol. 328, pp. 387-394, 2015.
[22] S. Ke, J. Yang, F. Qiu, Z. Wang, C. Wang, and Y. Yang, "Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering," Nanotechnology, vol. 26, pp. 445602, 2015.
[23] A. Malachias, S. Kycia, G. Medeiros-Ribeiro, R. Magalhaes-Paniago, T. Kamins, and R. S. Williams, "3D composition of epitaxial nanocrystals by anomalous x-ray diffraction: Observation of a Si-rich core in Ge domes on Si (100)," Physical Review Letters, vol. 91, pp. 176101, 2003.
[24] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A. Bittner, et al., "Investigating the lateral motion of SiGe islands by selective chemical etching," Surface science, vol. 600, pp. 2608-2613, 2006.
[25] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A. Bittner, A. Rastelli, et al., "Kinetic origin of island intermixing during the growth of Ge on Si (001)," Physical Review B, vol. 72, p. 195320, 2005.
[26] M.-K. Lee, C.-H. Chu, Y.-H. Wang, and S. Sze, "1.55-μm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector," Optics letters, vol. 26, pp. 160-162, 2001.
[27] 陳冠翔, "在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究," 碩士, 照明與顯示科技研究所, 國立中央大學, 桃園縣, 2014.
[28] 石邱毅, "磁控濺鍍法製作高品質多晶砷化鎵薄膜 之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2017.
[29] 林宗孝, "近紅外光單晶鍺薄膜光偵測器," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2014.
[30] 毛奕群, "以濺鍍法製作p-type單晶鍺薄膜於太陽能電池之應用," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2015.
[31] A. Baskaran and P. Smereka, "Mechanisms of stranski-krastanov growth," Journal of Applied Physics, vol. 111, p. 044321, 2012.
[32] X. Xu, J. Zhuang, Y. Du, S. Eilers, G. Peleckis, W. Yeoh, et al., "Epitaxial growth mechanism of silicene on Ag (111)," in Nanoscience and Nanotechnology (ICONN), 2014 International Conference on, 2014, pp. 28-30.
[33] S. Swapp, "Scanning Electron Microscopy (SEM)," 2017, from the World Wide Web: https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html.
[34] B. Kyeyune, Atomic Force Microscopy, 2017, from the World Wide Web: https://www.researchgate.net/profile/Bob_Kyeyune/publication/322294428_Atomic_Force_Microscopy/links/5aa703464585152d7665c0d0/Atomic-Force-Microscopy.pdf.
[35] R. S. Gorugantu and S. M. Salapaka, "A New Dynamic Imaging Mode for High-Resolution and High-Bandwidth Atomic Force Microscopy," in 2018 Annual American Control Conference (ACC), pp. 6018-6023, 2018.
[36] P. W. Hawkes and J. C. Spence, Science of microscopy: Springer Science & Business Media, 2008.
[37] S. Magonov, V. Elings, and M.-H. Whangbo, "Phase imaging and stiffness in tapping-mode atomic force microscopy," Surface science, vol. 375, pp. L385-L391, 1997.
[38] G. Capellini, M. De Seta, F. Evangelisti, V. A. Zinovyev, G. Vastola, F. Montalenti, et al., "Self-Ordering of a Ge Island Single Layer Induced by Si Overgrowth," Physical Review Letters, vol. 96, p. 106102, 2006.
[39] A. Rastelli, M. Kummer, and H. von Känel, "Reversible Shape Evolution of Ge Islands on Si(001)," Physical Review Letters, vol. 87, pp. 256101, 2001.
[40] D. Fougerouse, M. Reddy Steven, W. Saxey David, D. A. Rickard William, A. van Riessen, and S. Micklethwaite, "Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy," in American Mineralogist vol. 101, pp. 1916, 2016.
[41] H. Z. Massoud, J. D. Plummer, and E. A. Irene, "Thermal Oxidation of Silicon in Dry Oxygen Growth‐Rate Enhancement in the Thin Regime I. Experimental Results," Journal of the electrochemical society, vol. 132, pp. 2685-2693, 1985.
[42] C. R. Helms and E. H. Poindexter, "The silicon-silicon dioxide system: Its microstructure and imperfections," Reports on Progress in Physics, vol. 57, pp. 791, 1994.
[43] R. Entner, "Modeling and simulation of negative bias temperature instability," Ph.D. Dissertation, Technische Universität Wien, 2007.
[44] A. A. Shklyaev and M. Ichikawa, "Effect of interfaces on quantum confinement in Ge dots grown on Si surfaces with a SiO2 coverage," Surface Science, vol. 514, pp. 19-26, 2002.
[45] A. A. Shklyaev, K. N. Romanyuk, and S. S. Kosolobov, "Surface morphology of Ge layers epitaxially grown on bare and oxidized Si(001) and Si(111) substrates," Surface Science, vol. 625, pp. 50-56, 2014.
[46] O. Schmidt and K. Eberl, "Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation," Physical Review B, vol. 61, pp. 13721, 2000.
[47] U. Denker, M. Stoffel, and O. Schmidt, "Probing the lateral composition profile of self-assembled islands," Physical review letters, vol. 90, pp. 196102, 2003.
[48] A. V. Kolobov, A. A. Shklyaev, H. Oyanagi, P. Fons, S. Yamasaki, and M. Ichikawa, "Local structure of Ge nanoislands on Si(111) surfaces with a SiO2 coverage," Applied Physics Letters, vol. 78, pp. 2563-2565, 2001.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2019-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明