博碩士論文 105256007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.172.233.215
姓名 呂雅茹(Ya-Ju Lu)  查詢紙本館藏   畢業系所 光電科學研究所碩士在職專班
論文名稱 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
(Adjusting the oxygen flow to improvement the current breakdown for the short channel oxide semiconductor under the high electric field)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬氧化物半導體是一種高透明度的電子材料,具有高遷移率的優勢,在顯示器的應用上,金屬氧化物薄膜電晶體 (Metal Oxide Thin Film Transistor,MO-TFT) 的元件結構與製程設計與目前主流的非晶矽薄膜電晶體非常接近,因此引起了面板製造商的高度關注,其中又以氧化銦鎵鋅 (InGaZnO,IGZO) 材料開發最為廣泛。
本研究首先針對作為主動層的IGZO薄膜和作為閘極絕緣層及鈍化層的SiOx薄膜做基本特性引出,匹配組成一蝕刻終止層 (ESL) 結構的薄膜電晶體,得到了載子遷移率為15.8 cm2 / V·s、電流開關比大於107的元件,並且展開成為陣列驅動背板,成功點亮一5.5吋液晶顯示器;接著我們關注於氧化物電晶體承受高電壓的可能性,由於短通道元件操作在高電場的環境下,帶來的焦耳熱、熱載子、游離碰撞等效應,導致元件發生電流崩潰,而我們藉由IGZO薄膜沉積時的氧流量調整,降低半導體中的載子含量,減少熱載子效應影響,使電晶體操作在65 V的閘極電壓和56 V的汲極電壓下沒有發生元件崩潰的現象。
根據此研究結果,我們確認了MO-TFT體操作在高電場下的可行性,除了在顯示器上的應用,未來也可以作為高功率元件開發的參考。
摘要(英) Metal oxide semiconductor is a highly transparent electronic material, it has high carrier mobility and can be easily replaced by the amorphous silicon backplate technology. As we know, the most widely researched and developed is the indium gallium zinc oxide (InGaZnO,IGZO).
In first, we analyze the basic thin film characteristics of IGZO and SiOx, that is two important key of metal oxide thin film transistor (MO-TFT), and formed a MO-TFT with an etching stop structure which has carrier mobility of 15.8 cm2 / V·s and the current switching ratio over 107. We also successfully demonstrated an array backplane to driven a 5.5-inch liquid crystal display.
Then we focus on the high voltage device develop, because the MO-TFT operating under the high current and high electric field environment, such induced the joule heating near the drain side, simultaneously, the short channel brings the hot carrier effect, therefore, serious impact ionization occurs in the channel and lead to the TFT breakdown.
In order to improve the TFT breakdown caused by short channel elements under high voltage, we adjusted the oxygen flow during the deposition of InGaZnO thin film to reduce the carrier content in the active layer and inhibition the effect of the hot carrier. Finally, the MO-TFT with 8 μm channel length which operates at a gate voltage of 65 V and a drain voltage of 56 V can be without breakdown behavior.
Based on the results of this study, we confirm that the short channel MO-TFT can operate in a high electric field environment, not only as a display application, but also as a reference for the development of high-power device.
關鍵字(中) ★ 氧化物半導體
★ 高電場
★ 氧流量
關鍵字(英) ★ Oxide Semiconductor
★ High Electric Field
★ Oxygen Flow
論文目次 中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 金屬氧化物材料簡介 3
1-3 氧化銦鎵鋅材料組成 4
1-4 研究動機與目的 6
第二章 基礎理論與文獻回顧 7
2-1 薄膜電晶體介紹 7
2-1-1 結構與操作原理 7
2-1-2 顯示器上的應用 10
2-1-3 輸出特性與公式 11
2-2 重要文獻回顧 14
2-2-1 氧分壓的影響 16
2-2-2 氫含量的影響 19
2-2-3 熱退火的影響 25
2-2-4 文獻回顧重點摘要 29
第三章 關鍵製程與實驗步驟 30
3-1 氧化銦鎵鋅薄膜製備與量測 30
3-1-1 氧化銦鎵鋅靶材 31
3-1-2 濺鍍沉積系統 32
3-1-3 熱風式高溫爐 35
3-1-4 膜厚量測設備 37
3-1-5 薄膜電阻量測 38
3-2 氧化矽薄膜製備與量測 39
3-2-1 電漿輔助化學氣相沉積 40
3-2-2 閘極絕緣層漏電率量測 42
3-3 氧化銦鎵鋅薄膜電晶體製作 45
3-3-1 元件結構 45
3-3-2 製程參數 47
3-3-3 電性量測 48
第四章 實驗結果與討論 50
4-1 氧化銦鎵鋅薄膜基本特性 50
4-1-1 不同氧流量的電阻值變化 50
4-1-2 不同氧氣流量對電晶體特性的影響 51
4-2 氧化矽薄膜基本特性 52
4-2-1 氣體比例對漏電率的影響 52
4-2-2 氣體比例對氫含量的影響 54
4-3 元件基本特性 55
4-3-1 大氣下電性量測 55
4-3-2 升溫偏壓測試 56
4-3-3 顯示器樣品展示 59
4-4 高電壓測試 60
4-4-1 氧流量10 % 高電壓量測 60
4-4-2 氧流量10 % 崩潰機制探討 65
4-4-3 氧流量15 % 高電壓量測 70
第五章 結論 73
參考文獻 75
參考文獻 [1] Nomura, K., H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004. 432(7016): p. 488-492.
[2] Fortunato, E., P. Barquinha, and R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Advanced Materials, 2012. 24(22): p. 2945-2986.
[3] Kamiya, T. and H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. Npg Asia Materials, 2010. 2(1): p. 15-22.
[4] Park, Y.R., J. Kim, and Y.S. Kim, Effect of hydrogen doping in ZnO thin films by pulsed DC magnetron sputtering. Applied Surface Science, 2009. 255(22): p. 9010-9014.
[5] Kumomi, H., K. Nomura, T. Kamiya, and H. Hosono, Amorphous oxide channel TFTs. Thin Solid Films, 2008. 516(7): p. 1516-1522.
[6] Chong, E., Y.S. Chun, S.H. Kim, and S.Y. Lee, Effect of oxygen on the threshold voltage of a-IGZO TFT. Journal of Electrical Engineering & Technology, 2011. 6(4): p. 539-542.
[7] Chong, E., Y.S. Chun, and S.Y. Lee, Effect of Trap Density on the Stability of SiInZnO Thin-Film Transistor under Temperature and Bias-Induced Stress. Electrochemical and Solid State Letters, 2011. 14(2): p. H96-H98.
[8] Tsao, S.W., T.C. Chang, S.Y. Huang, M.C. Chen, S.C. Chen, C.T. Tsai, Y.J. Kuo, Y.C. Chen, and W.C. Wu, Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electronics, 2010. 54(12): p. 1497-1499.
[9] Van de Walle, C.G., Hydrogen as a cause of doping in zinc oxide. Physical Review Letters, 2000. 85(5): p. 1012-1015.
[10] Kamiya, T., K. Nomura, and H. Hosono, Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping. Journal of Display Technology, 2009. 5(7): p. 273-288.
[11] Kamiya, T., K. Nomura, and H. Hosono, Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO4 studied by density functional theory. Physica Status Solidi a-Applications and Materials Science, 2010. 207(7): p. 1698-1703.
[12] Nomura, K., T. Kamiya, and H. Hosono, Effects of Diffusion of Hydrogen and Oxygen on Electrical Properties of Amorphous Oxide Semiconductor, In-Ga-Zn-O. ECS Journal of Solid State Science and Technology, 2013. 2(1): p. P5-P8.
[13] Toda, T., D.P. Wang, J.X. Jiang, M.P. Hung, and M. Furuta, Quantitative Analysis of the Effect of Hydrogen Diffusion from Silicon Oxide Etch-Stopper Layer into Amorphous In-Ga-Zn-O on Thin-Film Transistor. IEEE Transactions on Electron Devices, 2014. 61(11): p. 3762-3767.
[14] Li, L., L.N. Fan, Y.H. Li, Z.X. Song, F. Ma, and C.L. Liu, Effect of thermal annealing on the properties of transparent conductive In-Ga-Zn oxide thin films. Journal of Vacuum Science & Technology A, 2014. 32(2): p. 6.
[15] Nomura, K., A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(5B): p. 4303-4308.
[16] Jeon, J.H., T.K. Gong, Y.M. Kong, H.M. Lee, and D. Kim, Effect of Post-Deposition Annealing on the Structural, Optical and Electrical Properties of IGZO Films. Electronic Materials Letters, 2015. 11(3): p. 481-484.
[17] Qin, C.P., J. Yang, B.W. Wang, T. Xu, and X.W. Ding, Optimization of annealing conditions in air for InGaZnO thin-film transistors by temperature-stress studies. Optoelectronics and Advanced Materials-Rapid Communications, 2018. 12(7-8): p. 407-412.
[18] Fuh, C.S., S.M. Sze, P.T. Liu, L.F. Teng, and Y.T. Chou, Role of environmental and annealing conditions on the passivation-free in-Ga-Zn-O TFT. Thin Solid Films, 2011. 520(5): p. 1489-1494.
[19] Kikuchi, Y., K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing. Thin Solid Films, 2010. 518(11): p. 3017-3021.
[20] Wang, D.P. and M. Furuta, Exploring the photoleakage current and photoinduced negative bias instability in amorphous InGaZnO thin-film transistors with various active layer thicknesses. Beilstein Journal of Nanotechnology, 2018. 9: p. 2573-2580.
[21] Wang, D.P., M.P. Hung, J.X. Jiang, T. Toda, and M. Furuta, Suppression of Degradation Induced by Negative Gate Bias and Illumination Stress in Amorphous InGaZnO Thin-Film Transistors by Applying Negative Drain Bias. ACS Applied Materials & Interfaces, 2014. 6(8): p. 5713-5718.
[22] Urakawa, S., S. Tomai, Y. Ueoka, H. Yamazaki, M. Kasami, K. Yano, D.P. Wang, M. Furuta, M. Horita, Y. Ishikawa, and Y. Uraoka, Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect. Applied Physics Letters, 2013. 102(5).
[23] Hsieh, T.Y., T.C. Chang, T.C. Chen, Y.T. Chen, M.Y. Tsai, A.K. Chu, Y.C. Chung, H.C. Ting, and C.Y. Chen, Self-Heating-Effect-Induced Degradation Behaviors in a-InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2013. 34(1): p. 63-65.
[24] Liu, K.H., T.C. Chang, M.S. Wu, Y.S. Hung, P.H. Hung, T.Y. Hsieh, W.C. Chou, A.K. Chu, S.M. Sze, and B.L. Yeh, Investigation of channel width-dependent threshold voltage variation in a-InGaZnO thin-film transistors. Applied Physics Letters, 2014. 104(13).
[25] Lee, S.W., P.J. Jeon, K. Choi, S.W. Min, H. Kwon, and S. Im, Analysis of Self-Heating Effect on Short Channel Amorphous InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2015. 36(5): p. 472-474.
[26] Suresh, A., P. Gollakota, P. Wellenius, A. Dhawan, and J.F. Muth, Transparent, high mobility of InGaZnO thin films deposited by PLD. Thin Solid Films, 2008. 516(7): p. 1326-1329.
[27] Liu, X., L. Yan, G. Yuan, L. Chen, J. Cheng, C. Jiang, X. Kong, J. Chen, W. Liu, and W. Shen. P‐21: Effects of Low Hydrogen Dielectric Film on a‐IGZO TFT Properties. in SID Symposium Digest of Technical Papers. 2015. Wiley Online Library.
[28] Chen, W.-T., Investigation on Metal Oxide Thin Film Transistor for Optoelectronic Devices Application, in Electro-Optical Engineering. 2009, National Chiao Tung University: Hsinchu, Taiwan.
[29] Hsu, C.-Y., Effects of different Oxygen flow in the Fabrication of Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors, in Electro-Optical Engineering. 2010, National Chiao Tung University: Hsinchu, Taiwan.
[30] Yuan, H.-C., Influence of Ambient Atmosphere on Thermal-Annealing Amorphous IGZO TFTs, in Electro-Optical Engineering. 2009, National Chiao Tung University: Hsinchu, Taiwan.
[31] Kim, S., Y.W. Jeon, Y. Kim, D. Kong, H.K. Jung, M.K. Bae, J.H. Lee, B. Du Ahn, S.Y. Park, J.H. Park, J. Park, H.I. Kwon, D.M. Kim, and D.H. Kim, Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2012. 33(1): p. 62-64.
[32] Yao, J.K., N.S. Xu, S.Z. Deng, J. Chen, J.C. She, H.P.D. Shieh, P.T. Liu, and Y.P. Huang, Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy. IEEE Transactions on Electron Devices, 2011. 58(4): p. 1121-1126.
[33] Wu, M.-S., Physical Mechanism Analysis of Self-Heating Effect Induced Degradation Behavior of Advanced InGaZnO Thin-Film Transistors for Gate Driver on Array Technology, in Electro-Optical Engineering. 2014, National Chiao Tung University: Hsinchu, Taiwan.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2020-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明