博碩士論文 105256017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.225.255.134
姓名 古德塏(De-Kai Ku)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 自動車三焦段鏡頭設計
相關論文
★ 白光LED於住宅照明之設計與應用★ 超廣角車用鏡頭設計
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 光學變焦之軌跡優化控制★ LED光源暨LED與太陽光混和照明於室內照明之模擬與分析
★ 利用光展量概念之微型投影機光學設計方法與實作★ 光學顯微鏡之鏡頭設計
★ 手機上隱藏式指紋辨識設計★ DLP微型投影系統之光路設計
★ 高效率藍光碟片讀取頭★ 模組化雙波長光學讀寫頭的設計與光學讀寫頭應用在角度量測的研究
★ 數位相機之鏡頭設計★ 單光電偵測器之複合式光學讀寫頭
★ 三百萬畫素二點七五倍光學變焦手機鏡頭設計★ 稜鏡玻璃選取對色差的影響與校正
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-24以後開放)
摘要(中) 本文為三鏡頭光學設計,作為下一世代自動駕駛系統影像識別使用,主要目的是讓自動駕駛系統在-30C至70C環境溫度下,影像皆可以清楚的辨識,增加自動駕駛系統的穩定與安全性。三鏡頭的特性如下:近距離鏡頭設計之物距範圍小於30m,焦距為3.6491 mm,F/#為2.2,最大半視角為75,中距離鏡頭設計之物距範圍30m - 70m,焦距為10.5081 mm,F/#為2.2,最大半視角為25,長距離鏡頭設計之物距範圍70-150m,焦距為18.287 mm,F/#為2.2,最大半視角為15。此三鏡頭設計都考慮環境溫度-30C至70C對熱校正。
隨著環境溫度的變化,鏡片的參數值會隨之改變,在消熱差的光學系統設計中,其有效焦距同步改變,即系統總屈光度會隨溫度變化而有所變化。在消熱差光學系統須使總屈光度與溫度之變化(d/dT)為零,如果d/dT無法消除則需使用鏡筒材質的膨脹係數(β)來補償,進而達到消熱差設計,本文在消熱差設計以優化不同鏡片與鏡筒材料的來達到消熱差的效果。
最終設計在環境溫度-30C至70C間的三焦段鏡頭之MTF(110 lp/mm)可達到0.6以上並並且切向與徑向的差異量小於0.1;相對照度達到86 %以上;短波長(F’-line)至長波長(C’-line) 橫向色差最大值為小於2.25um,畸變值小於2 %,材料優化後消熱差條件小於1.9110-6。
摘要(英) The thesis is about the design of three different focal lenses for next generation of autopilot. The purpose is that let the autopilot could be safe and stabilized to identify environment within temperature range from -30C to 70C. The three lens specifications are as follows: Lens with short focal length - Object distance is less than 30 meters, Focal length is 3.6491 mm, F/# is 2.2, and the maximum of half-FOV(field-of-view) is 75 degree; Lens with moderate focal length- Object distance is between 30 and 70 meters, Focal length is 10.5081 mm
,F/# is 2.2,and the maximum of half-FOV(field-of-view) is 25 degree; Lens with long focal length - Object distance is between 70 and 150 meters, Focal length is 18.287 mm, F/# is 2.2,and the maximum of half-FOV(field-of-view) is 15 degree.
The advantage of the three lenses is introducing thermal compensation to optical design at temperature between -30C and 70C. It means that little focal shifts at different temperature between -30C and 70C.
Temperature variation induces refractive index change of glass. Due to thermal expansion that lens radius, thickness of optical element, air gap, and the shape of mechanics are changed. Applying the thermal coefficient of the refractive index (dn/dT) of lens, thermal expansion coefficient of the lens (α) and the thermal expansion coefficient of mount (β) to optical simulation is necessary.
Lens parameters will vary with environmental temperature. Athermal design will let effective length change coherent with thermal variation. It means that diopter and thermal variation will change simultaneously. In Athermal system, the ration between diopter and thermal variation (d/dT) should be zero. If d/dT could not be eliminated, the thermal expansion coefficient (β) of the barrel will be used for athermal compensation. The thesis is focused on eliminating athermal effect by adjusting lens diopter and material of the barrel.
Conclusion that triple-focus lens between -30C and 70C has benefits as below: MTF @110lp/mm >0.6 and the gap between tangential and radial is small than 0.1, Relative illumination>86%, Later color between short wavelength (F’-line) and long one (C’-line)<2.25μm, Optical distortion<2%, athermalization is small than 1.9110-6.
關鍵字(中) ★ 廣角鏡頭
★ 消熱差
★ 熱膨脹係數
★ 折射率的溫度係數
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
誌 謝 IV
目錄 V
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 4
1-4 Yang[25]和Rogers[38]消熱差補償方式範例 11
1-5 論文架構 15
第二章 理論 17
2-2 溫度對鏡頭參數的影響 18
2-2-1 玻璃折射率與溫度關係 18
2-2-3 溫度變化與熱膨脹係數對鏡片參數的影響 19
2-2-4 屈光度變化與dn/dt關係 20
2-3 相對照度 23
2-3-1-1立體角定義 23
2-3-1-2投影立體角與正向立體角關係 28
2-3-2介面穿透率 30
2-3-2-1垂直入射反射率與介面穿透率定義 30
2-3-2-2斜向入射反射率與介面穿透率(Tθ)定義 31
2-3-4 相對照度公式 33
2-5 畸變種類 35
2-5-1 F-theta畸變 35
2-5-2 光學畸變 37
第三章 設計方法 39
3-1 感測器規格 39
3-2 波長的選取 40
3-3 MTF空間頻率的選取 40
3-4 溫度範圍選取 41
3-5 有效焦距值設計 42
3-6 設計目標 43
3-7 設計過程 44
3-7-1 起始值設計 44
3-7-2 材料選取範圍設定 45
3-7-3 優化過程 46
3-7-5 環境溫度分析之CODE V 設定 47
3-7-6 消熱差補償 55
4-1 近距離鏡組設計目標與設計結果比較 65
4-1-1 組設計結果與相關參數 65
4-1-2 近距離鏡頭公差分析 115
4-2 中距離鏡組設計目標與設計結果比較 120
4-2-1 鏡組設計結果與相關參數 120
4-2-2 中距離鏡頭公差分析 136
4-3 遠距離鏡組設計目標與設計結果比較 141
4-3-1 鏡組設計結果與相關參數 141
4-3-2 遠距離鏡頭公差分析 156
第五章 結論與未來展望 161
附錄一(不同玻璃之色散係數) 163
附錄二(溫度係數常數) 166
附錄三(10mm之鏡片內部穿透率) 169
附錄四(25mm之鏡片內部穿透率) 172
參考文獻 1. T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156-160 (1981).
2. https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
3. IHS, ADAS-Current and Future Perspectives. IHS Automotive Seminar , Frankurt, Germany. (2015,June).
4. SAE INTERNATIONAL, ADAS/CONNECTED CAR. Warrendale, PA, U.S.A. (2018,Dec).
5. Mobile vision technology Ltd, Forward-facing multi-image a vechicle . U.S.PATENT Pub. No. US2015/0103159 A1. (2015).
6. Google Inc, Cross-validating sensors of an autonomous vehcle, U.S. PATENT No. US9221396 B1. (2015).
7. Maria S. Greco, Automotive Radar. IEEE Radar Conference , Atlanta, U.S.A. (2012,May).
8. R. W. Wood, “Refraction of Light,” in Handbook of PhysicalOptics (Optical Society of America, Washington, DC, 1911).
9. R. Hill, “A Lens for Whole Sky Photography,” in Proceedings of the Optical Convention , (London, 1926) , pp.878-883.
10. J. Y. Zheng and S. G. Li, “Employing a fish-eye for scene tunnel Scanning,” in Asian Conference on Computer Vision,( Hyderabad, 2006), pp. 509.
11. W. S. Sun, C. L. Tien, Y. H. Chen, P. Y. Chu, “Ultra-wide angle lens design with relative illumination analysis,” J. Eur. Opt. Soc. –Rapid 11, 16001 (2016).
12. D. S. Grey, “Athermalization of Optical Systems,” J. Opt. Soc. Am, 38, 542-546 (1948).
13. M. J. Duggin, “Discrimination of targets from background of similar temperature, using two-channel data in the 3.5-4.1-m and 11–12-m regions,” Appl. Opt. 25(7), 1186–1195 (1986).
14. M. H. Horman, “Temperature analysis from multispectral infrared data,” Appl. Opt. 15(9), 2099–2104 (1976).
15. T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23(2), 111–116 (1984).
16. M. Roberts and P. J. Rogers, “Wide waveband infrared optics,” Proc. SPIE 1013, 84–91 (1988).
17. Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36(1), 297–301 (1997).
18. J. L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752-759 (1990).
19. I. Friedman, “Thermo-optical analysis of two long-focal length aerial reconnaissance lenses,” Opt. Eng. 20, 161-165 (1981).
20. W. Shi, M. E. Couture, “Long wave infrared zoom projector thermal analysis and compensation,” Opt. Eng. 39, 2705-2714 (2000).
21. M. Bayar, Ő. F. Farsakoğlu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Physics & Technology 43, 91-99 (2002).
22. C. W. Kuo, C. L. Lin, and C. Y. Han, “Dual field-of-view midwave infrared optical design and athermalization analysis,” Appl. Opt. 49(19), 3691–3700 (2010).
23. Y. Tamagawa, S. Wakabayashi, T. Tajime, and T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33, 8009-8013 (1994).
24. Y. Tamagawa, T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35, 3001-3006 (1996).
25. Y. J. Kim, Y. S. Kim, and S. C. Park, “Simple graphical selection of optical materials for an athermal and achromatic design using equivalent Abbe number and thermal glass constant,” Journal of the optical society of Korea 19, 182-187 (2015).
26. R. C. Simmons and P. A. Blaine, ‘‘Stability of aberrations with temperature in fast thermal imaging zoom telescopes,’’ Proc. SPIE 916, 19–26 (1988).
27. C. W. Kuo, J. M. Miao, and C. H. Tai, “Midwave infrared optical zooming design and kinoform degrading evaluation methods,” Appl. Opt. 50(18), 3043–3049 (2011).
28. G. P. Behrmann and John P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483-2489 (1993).
29. C. Londoňo, W. T. Plummer, P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295-2302 (1993).
30. R. M. Hudyma, “Athermal MWIR Objectives,” Proc. SPIE 2540, 229-235 (1995).
31. V. Povey, “Athermalisation technique in infrared systems,” Proc. SPIE, 655, 142–153 (1986).
32. R. Q. Wu, K. Huang, H. Yang, J. Wang, Y. Liu, “Analysis of athermalizing performance of thermal infrared optical system with Cassegrain antenna,” Optik 121, 1904-1907 (2010).
33. H. S. Yang et al., “Three-shell-based lens barrel for the effective athermalization of an IR optical system,” Appl. Opt. 50(33), 6206-6213 (2011).
34. A. H. Wang, Q. H. Wang, X. F. Li and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827-830 (2012).
35. O. V. Ponin and A. A. Sharov, “Apochromatic thermally nonmisadjustable objectives for wide-range multispectral space imaging,” J. Opt. Technol. 80, 230-232 (2013).
36. B. N. Walker, R. H. James, D. Calogero, and I. K. Iiev, “Impact of environmental temperature on optical power properties of intraocular lenses,” Appl. Opt. 53, 453-457 (2014).
37. Schott, Optical Glass Catalogue Excel (Schott Inc., Germany, June, 2012).
38. P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742-751 (1990).
39. Schott, “TIE-29: Refractive index and dispersion,” in Proc. Schott Technical information (Schott Inc., Germany, 2015).
40. Schott, “TIE-19: Temperature coefficient of the refractive index,” in Proc. Schott Technical information (Schott Inc., Germany, July 2008).
41. J.M. Palmer, B.G. Grant.The Art of Radiometry (SPIE press Bellingham WA, USA, 2010).
42. Grant R. Fowles, Introduction to Modern optics. Second ed, New York.Holt Rinehart and Winston Inc.
43. Schott, “TIE-35: Transmittance of optical glass ,” in Proc. Schott Technical information (Schott Inc., Germany, Oct 2005).
44. Automotive Image Sensor
https://www.sony-semicon.co.jp/products_en/IS/sensor4/index.html
45. SUMITOMO E6007LHF
https://www.sumitomo-chem.co.jp/sep/english/products/lcp/
46. 高鳳遙,「超大廣角鏡頭在溫度-20C至60C對熱的分析與校正之鏡頭設計」,國立中央大學,碩士論文,民國105年。
47. 徐英舜,「汽車超大廣角於溫度-30C至70C消熱差與高相對照度之鏡頭設計」,國立中央大學,碩士論文,民國106年。
指導教授 孫文信 審核日期 2019-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明