博碩士論文 105282001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:18.221.11.166
姓名 鄭凱聿(Kai-Yu Cheng)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(LGAD TCAD Simulation and Manufacture)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ TCAD simulation of silicon detector★ Assembly and Beam Test Analysis of sPHENIX INTT Detector
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這本次研究中藉由半導體技術(Technology Computer Aided Design, TCAD)模擬來研究並實際生產低增益雪崩放大二極體(Low Gain Avalanche Detector, LGAD)粒子感測器,這是目前許多高能對撞機預計用在更新軌跡偵測器的高時間解析度元件,我們試著用模擬來建立整個生產的過程與不同的光罩設計,以了解各製程步驟及結構對LGAD的特性的影響,從結構的模擬結果中發現在光罩設計中將核心的增益區與接面邊界延伸(Junction Termination Extension, JTE)分開10到15微米的間距可以減輕增益電場在邊緣因JTE而產生的尖端電場將崩潰電壓從260伏特提升至280伏特,同時不會影響有效區域的範圍及邊界,因此可在相同的占比內獲得更高的崩潰電壓。也藉由增益值模擬為製程參數訂出LGAD的合適參數範圍,並根據後來製程中的回饋加大測試幅度,最終將硼的劑量訂在每平方公分5×1013 ~ 2×1014並經過至少400分鐘的長時間擴散,搭配擴散200分鐘或30分鐘的磷來形成不同深淺的增益層。然而縱使已加重硼的劑量,最終並沒有形成預想中的增益層。根據二次離子質譜儀分析(Secondary Ion Mass Spectrometer, SIMS)的結果比對,推測在製程上有許多因素使量測劑量、深度等無法與製程參數匹配,導致不適合從此次結果建立模擬到實際製程的連結。從此次結果比對中顯示若下次遇到類似情況,從改變溫度著手或許更能穩定的改動濃度曲線來形成增益層。
摘要(英) In this study, technology computer aided design (TCAD) simulations are used to study and build a process flow for producing low gain avalanche diode (LGAD) particle sensors. The LGAD sensor is expected to be used in many high-energy colliders to upgrade the trajectory detectors and improve time resolution. The entire manufacturing process and various mask designs are simulated to understand how each step in the process step and the structure of the LGAD affect its properties. The structural simulation shows that leaving the 10 ~ 15 μm distance between the gain region and the junction termination extension (JTE) can reduce the intensity of the electric field protruding from the edge, which is formed by the gain electric field limited by the JTE. This reduction in intensity can increase the breakdown voltage from 260V to 280V while maintaining the same space utilization, active area, and boundary. Gain simulation provides the definitive standard for determining the range of process parameters. 5×1013 ~ 2×1014 cm-2 boron dose is diffused at least 400 minutes to co-locate with phosphorus diffusion for either 200 or 30 minutes, resulting in the formation of layers with different depths of gain layers. However, even when the boron dose is very high, the gain layer still does not form. Based on the results of the secondary ion mass spectrometer (SIMS), which indicate a discrepancy between the doses and concentration depths in the process flow, we suspect that these mismatched relationships are caused by other factors during the manufacturing process. Therefore, it is inappropriate to establish a relationship between simulation and manufacturing based on this result. The failed modification suggests that modifying the diffusion temperature could be a more dependable approach to resolving similar issues in the future.
關鍵字(中) ★ 高能物理
★ 矽探測器
★ 製程模擬
★ 低增益
★ 崩潰電壓
★ 增益電場
關鍵字(英) ★ High energy physics
★ silicon sensor
★ TCAD
★ LGAD
★ breakdown voltage
★ gain electric field
論文目次 摘要 i
Abstract ii
Contents iii
List of Figure v
List of Table xii
1. Introduction 1
2. LGAD (Low Gain Avalanche Detector) 2
2.1. The principle of silicon particle sensor 3
2.2. Structure of LGAD 4
2.3. Mask Design 6
2.4. The LGAD manufacture process 10
3. TCAD (Technology Computer Aided Design) 19
3.1. Simulation space and grid setting 20
3.2. Athena [6] 22
3.2.1. Ion Implantation model 23
3.2.2. Diffusion 25
3.3. Atlas [7] 28
3.3.1. Carrier Generation-Recombination Models 30
3.3.2. Yamaguchi Model 31
3.3.3. Selberherr’s Impact Ionization Model 32
3.3.4. Lombardi CVT Model 33
3.3.5. Luminous 34
3.4. Process Flow Simulation 35
3.4.1. Diffusion time 37
3.4.2. Implant Dose 38
3.4.3. LGAD Electrical Characteristics 41
3.4.4. Implant Dose Range 44
3.4.5. Gain Simulation 48
3.5. Structure Simulation 56
3.6. TCAD Simulation to Real Manufacture 75
4. Measurement 86
4.1. Uniformity 86
4.2. C-V Measurement 92
4.3. Gain 97
4.4. SIMS (Secondary Ion Mass Spectrometer) Result 99
5. Summary 110
Bibliography 113
Appendix A List of Structure Parameters 115
Appendix B Process Flow 126
參考文獻 [1] H. F.-W. Sadrozinski and A. Seiden, "4-Dimensional Tracking with Ultra-Fast Silicon Detectors," IOP, vol. 81, no. 2, 18 Dec 2017.
[2] P. Fernández-Martínez, D. Flores, S. Hidalgo, V. Greco, A. Merlos, G. Pellegrini and D. Quirion, "Design and fabrication of an optimum peripheral region for low gain," Nuclear Instruments and Methods in Physics Research A, pp. 93-100, June 2016.
[3] N. Moffat, R. Bates, M. Bullough and N. Tartoni, "A novel detector for low-energy photon detection," in IEEE (NSS/MIC), Sydney, NSW, Australia , 2018.
[4] K. Wu, M. Zhao, T. Yang, João Guimarães da Costa, Z. Liang and X. Shi, "Design and fabrication of Low Gain Avalanche Detectors (LGAD): a TCAD simulation study," Journal of Instrumentation, no. 15, March 2020.
[5] 周黃克鳴, "TCAD simulation of silicon detector," 2021.
[6] "Athena User′s Manual," SILVACO, Santa Clara, 2015.
[7] "Atlas User Manual," Silvaco, Santa Clara, 2020.
[8] Ranjeet Dalal, Geetika Jain, Ashutosh Bhardwaj n, Kirti Ranjan, "TCAD simulation of Low Gain Avalanche Detectors," Nuclear Instruments and Methods in Physics Research A, vol. 836, pp. 113-121, Nov 2016.
[9] I. Cortés, P. Fernández-Martínez, D. Flores, S. Hidalgo and J. Rebollo, "Gain estimation of RT-APD devices by means of TCAD numerical simulations," in Proceedings of the 8th Spanish Conference on Electron Devices, Palma de Mallorca, Spain, 2011.
[10] S. Bharthuar, J. Ott, K. Helariutta, V. Litichevskyi, E. Brücken, A. Gädda, L. Martikainen, S. Kirschenmann, T. Naaranoja, P. Luukka, “Study of Interpad-gap of HPK 3.1 production LGADs with Transient Current Technique,” Nuclear Inst. and Methods in Physics Research, A, July 2020.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明