博碩士論文 105282603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.23.92.127
姓名 胡桐(Ho Thi Thong)  查詢紙本館藏   畢業系所 物理學系
論文名稱 藉由控制硫化亞錫晶體取向以及介面能帶位置改善硫化亞錫太陽能電池的光伏特性
(Improved Photovoltaic Properties of Tin(II) Sulfide Solar Cells by Modulating the SnS Crystallographic Orientation and the Interfacial Band Alignment)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 太陽能由於其具有的巨大能量、廣泛性以及永久性,因此被視為未來綠色能源中重要的來源之一。近年來,太陽能電池產業迅速的蓬勃發展,其中以矽太陽能電池、銅銦鎵硒太陽能電池以及硫化鎘太陽能電池佔據了主要市場,但是這些太陽能電池也有其短處。例如,使用高成本的原料或是具有毒性的元素。為了克服以上問題,開發地球富含元素的太陽能電池是勢在必行的目標。而最近硫化亞錫太陽能電池引起了大家的關注,因為其具備了以上所需的條件。但是硫化亞錫太陽能電池仍面臨著極大的挑戰,主要原因是它不足以商業化的效率。因此在本研究中,主要分成兩個部分來提升硫化亞錫太陽能電池的光電轉換效率。第一部分會專注於設計一個新穎的硫化亞錫薄膜成長方式,克服傳統方式的成長缺點。第二部分則是專注於發展一個全新的緩衝層,以調節硫化亞錫以及緩衝層介面的能帶位置。
在低維度的晶體結構材料中(尤其是硫化亞錫),晶體取向對於載子遷移、載子複合具有極高的影響力,而此項特性也會間接地影響電子元件效率。目前,有許多方式可以成長硫化亞錫的薄膜。其中以氣相沈積法最為大宗,因為許多研究發現以氣相沈積法合成硫化亞錫所製作的太陽能電池,其薄膜品質以及光電轉換效率都有所提升。但是,目前大部分的文獻並沒有深入探討晶體取向對於載子遷移以及太陽能電池效率的影響,或是如何控制硫化亞錫的晶體取向。因此,在本研究中,我們結合了多段升溫步驟以及氣相沈積法用來控制硫化亞錫的晶體取向。從實驗結果中可以發現040平面並不利於載子遷移,而且會造成嚴重的體內載子複合以及SnS/CdS介面複合。結果中發現,藉由抑制040平面的成長,可以有效的減少載子複合,而硫化亞錫薄膜太陽能電池的效率可以有效的從0.11%提升到2%
薄膜太陽能電池是由多層結構堆積而成的電子元件。例如,緩衝層、前電極、背電極或是吸收層,每一層都具備其重要性以及各自的功能,而太陽能電池的光電轉換效率就取決於各層之間的交互作用。其中,緩衝層大大的影響太陽能電池效率,因為緩衝層決定PN接面的能帶位置,不合適的能帶位置會造成嚴重的介面複合。因此本研究的第二部份發展了無毒且寬能隙的氧化鋅錫(ZTO)作為緩衝層,藉由調控鋅與錫的比例,可以更進一步微調能帶位置。從實驗結果發現當使用硫化鎘作為緩衝層時,導電帶位移會呈現懸崖式能帶(cliff-type)位置,不過當緩衝層替換為氧化鋅錫時,導電帶位移會呈現凸起式能帶(Spike-type)位置。當導電帶位移為Spike-type時,可以明顯的觀察到介面複合顯著地減少,而太陽能電池的光電轉換效率也從1.67%提升到3%,開路電壓也從0.72 eV提升到0.85 eV。
摘要(英) Solar energy is one of the essential green energy resources owing to its naturally massive abundance, universal accessibility, and long-term sustainability. The evolution of the solar photovoltaic industry has been remarkable in recent years. The main limitations of current well-developed photovoltaic devices (Silicon technology, CIGS, and CdTe) are the high cost and/or the toxic element. The earth-abundant thin-film solar cells (TFSCs) for approaching both environmentally friendly and cost-effective, therefore, are the ideal solution for harvesting solar energy. Among current earth-abundant materials, tin(II) monosulfide (SnS) is considered a promising cost-effective semiconductor. However, the device performance of SnS-based solar cells remains quite low owing to the lack of understanding of SnS properties. This dissertation is attempting to address the main strategies which might play a key role in boosting the device performance of SnS TFSCs. The works mainly focus on presenting a novel experimental design methodology to overcome the SnS growth strategies and developing an alternative eco-friendly buffer layer to obtain favorable band alignment at SnS/buffer layer interface.
With low-dimensional crystal structural materials (particularly SnS), the crystallographic orientation plays a key role in manipulating the charge transport, carrier recombination, and eventually device characteristics. Many deposition methods have been developed to grow SnS thin-film and recently vapor transport deposition (VTD) has shown a great increase in both SnS quality and device performance. However, up to now, not much report provides direct evidence about the effect of crystallographic orientation on the charged transport and device performance, or how to control the crystallographic orientation in SnS thin-film. Herein, we proposed an effective experimental setup/geometry and a multi-step annealing process during the VTD process to intentionally tailor the crystal orientation. These two approaches have directly modified the growth behavior and tailored the crystallographic orientation. All observed results supported that (040) plane is harmful to charge transport, and caused revere recombination in SnS devices (bulk and/or interface). Therefore, the suppression of the (040) plane in SnS thin films led to a dramatic improvement in PCE from 0.11% to almost 2%.
A photovoltaic device is a stack of multiple layers which have their own importance and effect on the final device performance. Therefore, not only the absorber layer, it is essential to take into account some important layers such as the buffer layer, back contact, front contact, etc. Among them, selecting a buffer layer is substantial because the unfavorable band alignment at p-n heterojunction might cause acute recombination at the interface and degrade device efficiency. Therefore, we developed an eco-friendly and wide bandgap buffer layer Zinc-Tin-Oxide (ZTO) with a tunable band offset. The conduction band offset (CBO) switch from the “cliff-type” (CBO = -0.41 eV with CdS buffer layer) to the “spike-type” (CBO = +0.23 eV with ZTO11 buffer layer) by controlling the Zn-to-Sn ratio. The favorable CBO led to the great suppression of the interfacial recombination which was proved by the increase of activation energy from 0.72 eV to 0.85 eV. As expectable result, the dramatical enhancement in the device performance was attained from PCE = 1.67%, Voc = 0.24 V, and Jsc = 13.57 mA/cm2 to PCE = 3.0%, Voc = 0.34 V and Jsc = 18.7 mA/cm2.
關鍵字(中) ★ 硫化亞錫
★ 地球富含元素的太陽能電池
★ 硫化亞錫薄膜太陽能電池
關鍵字(英) ★ Tin monosulfide
★ Earth-abundant solar cells
★ SnS thin-film solar cells
論文目次 論文摘要 v
Abstract vi
Acknowledgment viii
Tables of content ix
List of Figures xi
List of Tables xvii
List of Abbreviations xviii
1. Overview of thin-film solar cells 1
1.1. Importance of renewable energy 1
1.2. Conventional configuration of thin-film solar cells 6
1.2.1. Substrate and back contact 6
1.2.2. Absorber layer 7
1.2.3. Buffer layer 8
1.2.4. Window layer 10
1.2.5. Front contact 10
1.3. Working principle of photovoltaic devices 11
2. Overview of Tin monosulfide SnS-based solar cells 17
2.1. The state of art in SnS-based solar cells 17
2.1.1. Overview 17
2.1.2. Main strategies in SnS growth 18
2.2. Development of tin monosulphide growth techniques in solar cell application 22
2.3. Alternative buffer layer for SnS-based solar cells 28
2.3.1. Band alignment 28
2.3.2. Cd-based buffer layers (CdS and Zn-doped CdS) 29
2.3.3. Cd-free buffer layer (ZnOS, ZnMgO, ZnSnO) 30
2.3.4. Methods to determine the energy band alignment 34
2.3.4.1. X-ray photoelectron spectroscopy (XPS) measurement 34
2.3.4.2. Cross-sectional scanning tunneling microscopy (X-STM) 36
3. Enhancing the Photovoltaic Properties of SnS-Based Solar Cells by Crystallographic Orientation Engineering 39
3.1. Overview 39
3.2. Experimental methods 41
3.2.1. Film Deposition 41
3.2.2. Device Fabrication 42
3.2.3. Characterizations and Measurements 43
3.3. Results and discussion 44
3.3.1. The effect of the tilting angle 44
3.3.2. The effect of the initial ramp rate 50
3.4. Conclusion 58
4. Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells 60
4.1. Overview 60
4.2. Experimental methods 62
4.2.1. Film Deposition 62
4.2.2. Device Fabrication 64
4.2.3. Characterizations and Measurements 65
4.3. Results and discussion 66
4.3.1. The properties of ZTO thin films grown by the ALD process 67
4.3.2. Device performance 71
4.3.3. Recombination investigation 76
4.3.4. Band alignment studies 79
4.4. Conclusion 83
5. Summary and Recommendation 84
5.1. Summary 84
5.2. Recommendation for the future direction 85
References 87
Appendix A 100
List of publications 108
List of conferences 109
參考文獻 (1) Renewable 2021 Global Status Report, REN21, 2021.
(2) https://ec.europa.eu/eurostat/
(3) https://www.eia.gov/todayinenergy/
(4) M. Forough, “Towards Sustainable China-MENA Relations in the Renewable Energy Sector”, The Netherlands, Leiden Asia Centre, 2021.
(5) https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels/
(6) http://en. wikipedia. org/wiki/Abundance_of_elements_in_Earth/
(7) USGS. National Minerals Information Center
(8) Daniel, A. R; Thomas, K.; Uwe, R. Advanced Characterization Techniques for Thin Film Solar Cells. Wiley-VCH, 2016.
(9) Luque, A.; Hegedus, S.; Handbook of Photovoltaic Science and Engineering. Wiley-VCH, 2003.
(10) Chantana, J.; Kawano, Y.; Nishimura, T.; Kimoto, Y.; Kato, T.; Sugimoto, H.; Minemoto, T.; Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process. ACS Appl. Mater. Interfaces 2020, 12, 22298−22307.
(11) Du, Y.; Wang, S.; Tian, Q.; Zhao, Y.; Chang, X.; Xiao, H.; Deng, Y.; Chen, S.; Wu, S.; Liu, S. Defect Engineering in Earth-Abundant Cu2ZnSn(S,Se)4 Photovoltaic Materials via Ga3+-Doping for over 12% Efficient Solar Cells. Adv. Funct. Mater. 2021, 2010325.
(12) Roland, S.; Hans, W. Chalcogenide Photovoltaics. Wiley-VCH, 2011.
(13) Albert, P.; Mark K.; Erik, C. G.; Bruno, E.; Wim C. Sinke. Photovoltaic Materials: Present Efficiencies and Future Challenges. Science, 2016.
(14) Manjeet, S.; Tanka, R. R.; Seong, Y. K.; Kihwan, K.; Jae, H. Y.; Jun, H. K. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications. ACS Appl. Mater. Interfaces 2016, 8, 12764−12771.
(15) P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, R. G. Gordon, Overcoming Efficiency Limitations of SnS-Based Solar Cells. Adv. Energy Mater. 2014, 4, 1400496.
(16) Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Brandt, R. E.; Poindexter, J. R.; Lee, Y. S.; Sun, L.; Polizzotti, A.; Park, H. H.; Gordon, R. G.; Buonassisi, T. 3.88% Efficient Tin Sulfide Solar Cells Using Congruent Thermal Evaporation. Adv. Mater. 2014, 26, 7488–7492.
(17) Kawano, Y.; Chantana, J.; Minemoto, T. Impact of Growth Temperature on the Properties of SnS Film Prepared by Thermal Evaporation and Its Photovoltaic Performance. Curr. Appl. Phys. 2015, 15, 897-901.
(18) Steinmann, V.; Brandt, R. E.; Buonassisi, T. Non-cubic Solar Cell Materials. Nat. Photonics. 2015, 9, 355–357.
(19) Lee, H.; Yang, W.; Tan, J.; Park, J.; Shim, S. G.; Park, Y. S.; Yun, J. W.; Kim, K. M.; Moon, J. High-Performance Phase-Pure SnS Photocathodes for Photoelectrochemical Water Splitting Obtained via Molecular Ink-Derived Seed-Assisted Growth of Nanoplates. ACS Appl. Mater. Interfaces 2020, 12, 15155−15166.
(20) Sun, L.; Haight, R.; Sinsermsuksakul, P.; Kim, S. B.; Park, H. H.; Gordon, R. G. Band Alignment of SnS/Zn(O,S) Heterojunctions in SnS Thin Film Solar Cells. Appl. Phys. Lett. 2013, 103, 181904.
(21) Pawar, P. S.; Cho, J. Y.; Neerugatti, K. E.; Sinha, S.; Rana, T. R.; Ahn, S.; Heo, J. Solution-Processed ZnxCd1−xS Buffer Layers for Vapor Transport Deposited SnS Thin-Film Solar Cells: Achieving High Open-Circuit Voltage. ACS Appl. Mater. Interfaces 2020, 12, 7001–7009.
(22) Patel, M.; Ray, A. Evaluation of Back Contact in Spray Deposited SnS Thin Film Solar Cells by Impedance Analysis. ACS Appl. Mater. Interfaces 2014, 6, 10099−10106.
(23) Martin, G.; Ewan, D.; Jochen, H. E.; Masahiro, Y.; Nikos, K.; Xiaojing, H. Solar Cell Efficiency Tables (version 57). Prog Photovolt Res Appl. 2021, 29, 3 – 15.
(24) Lim, D.; Suh, H.; Suryawanshi, M.; Song, G. Y.; Cho, J. Y.; Kim, J. H.; Jang, J. H.; Jeon, C. W.; Cho, A.; Ahn, S.; Heo, J. Kinetically Controlled Growth of Phase-Pure SnS Absorbers for Thin Film Solar Cells: Achieving Efficiency Near 3% with Long-Term Stability Using an SnS/CdS Heterojunction. Adv. Energy Mater. 2018, 8, 1702605.
(25) Cho, J. Y.; Kim, S. Y.; Nandi, R.; Jang, J.; Yun, H. S.; Enkhbayar, E.; Kim, J. H.; Lee, D. K.; Chung, C. H.; Kim, J. H.; Heo, J. Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar Cells by Improving the Heterojunction Interface Quality. J. Mater. Chem. A. 2020, 8, 20658-20665.
(26) Zhou, Y.; Wang, L.; Chen, S.; Qin, S.; Liu, S.; Chen, J.; Xue, D. J.; Luo, M.; Cao, Y.; Cheng, Y.; Sargent, E. H.; Tang, J. Thin-film Sb2Se3 Photovoltaics with Oriented One-Dimensional Ribbons and Benign Grain Boundaries. Nat. Photonics. 2015, 9, 409-416.
(27) Tang, R.; Wang, X.; Lian, W.; Huang , J.; Wei , Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang , C.; Xing , G.; Chen, S.; Zhu, C.; Hao, X.; Green, M. A.; Chen, T. Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency. Nat. Energy. 2020, 5, 587–595.
(28) Wen, X.; Lu, Z.; Wang, G. C.; Washington, M. A.; Lu, T. M. Efficient and Stable Flexible Sb2Se3 Thin Film Solar Cells Enabled by an Epitaxial CdS Buffer Layer. Nano Energy 2021, 85, 106019.
(29) Chen, B.; Ruan, Y.; Li, J.; Wang, W.; Liu, X.; Cai, H.; Yao, L.; Zhang, J. M.; Chena, S.; Chen, G. Highly Oriented GeSe Thin Film: Self-Assembly Growth via the Sandwiching Post-Annealing Treatment and Its Solar Cell Performance. Nanoscale. 2019, 11, 3968.
(30) Feng, M.; Liu, S. C.; Hu, L.; Wu, J.; Liu, X.; Xue, D. J.; Hu, J. S.; Wan, L. J. Interfacial Strain Engineering in Wide-Bandgap GeS Thin Films for Photovoltaics. J. Am. Chem. Soc. 2021, 143, 9664–9671.
(31) Albers, W.; Haas, C.; Vink, H. J.; Wasscher, J. D. Investigations on SnS. Appl. Phys 1961, 32, 2220.
(32) Banai, R. E.; Horn, M. W.; Brownson, J. R. S. A Review of Tin (II) Monosulfide and Its Potential as a Photovoltaic Absorber. Sol. Energy Mater Sol. Cells 2016, 150, 112–129.
(33) Burton, L. A.; Colombara, D.; Abellon, R. D.; Grozema, F. C.; Peter, L. M.; Savenije, T. J.; Dennler, G.; Walsh, A. Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2. Chem. Mater. 2013, 25, 4908 – 4916.
(34) Xiao, Z.; Ran, F. Y.; Hosono, H.; Kamiya, T. Route to n-type Doping in SnS. Appl. Phys. Lett. 2015, 106, 152103.
(35) Reddy, N. K.; Devika, M.; Gunasekhar, K. R. Influence of Seed Layer Orientation on the Growth and Physical Properties of SnS Nanostructures. Appl. Phys. A 2014, 116, 1193−1197.
(36) Tritsaris, G. A.; Malone, B. D.; Kaxiras, E. Structural Stability and Electronic Properties of Low-index Surfaces of SnS. J. Appl. Phys. 2014, 115, 173702.
(37) Noguchi, H.; Setiyadi, A.; Tanamura, H.; Nagatomo, T.; Omoto, O. Characterization of Vacuum-evaporated Tin Sulfide Film for Solar Cell Materials. Sol. Energy Mater. Sol. Cells 1994, 25, 325-331.
(38) Johnson, J. B.; Jones, H.; Latham, B. S.; Parker, J. D.; Engelken, R. D.; Barber, C. Optimization of Photoconductivity in Vacuum-evaporated Tin Sulfide Thin Films. Semicond. Sci. Tech. 1999, 14, 501.
(39) Devika, M.; Reddy, K. T. R. Microstructure Dependent Physical Properties of Evaporated Tin Sulfide Films. J. Appl. Phys. 2006,100, 023518.
(40) Kawano, Y.; Chantana, J.; Minemoto, T. Impact of Growth Temperature on the Properties of SnS Film Prepared by Thermal Evaporation and Its Photovoltaic Performance. Curr. Appl. Phys. 2015, 15, 897-901.
(41) Sinsermsuksakul, P.; Heo, J.; Noh, W.; Hock, A. S.; Gordon, R. G. Atomic Layer Deposition of Tin Monosulfide Thin Films. Adv. Energy Mater. 2011, 1, 1116-1125.
(42) Reddy, V. R. M. ; Gedi, S.; Park, C.; Miles, R. W.; Reddy, R. K. T. Development of Sulphurized SnS Thin Film Solar Cells. Curr. Appl. Phys. 2015, 15, 588-598.
(43) Avellaneda, D.; Nair, M. T. S.; Nair, P. K. Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition. J. Electrochem. Soc. 2008, 155, D517.
(44) Turan, E.; Kul, M.; Aybek, A. S.; Zor, M. Structural and Optical Properties of SnS Semiconductor Films Produced by Chemical Bath Deposition. J. Phys. D Appl. Phys. 2009, 42, 245408.
(45) Gao, C.; Shen, H. L.; Sun, L.; Huang, H. B.; Lu, L. F.; Cai, H. Preparation of SnS Films with Zinc Blende Structure by Successive Ionic Layer Adsorption and Reaction Method. Mater. Lett. 2010, 64, 2177.
(46) Yun, H. S.; Park, B. W; Choi, Y. C.; Im, J.; Shin, T. J.; Seok, S. I. Efficient Nanostructured TiO2/SnS Heterojunction Solar Cells. Adv. Energy Mater. 2019, 9, 1901343.
(47) Cho, J. Y.; Sinha, S.; Gang, M. G.; Heo, J. Controlled Thickness of a Chemical-bath-deposited CdS Buffer Layer for a SnS Thin Flm Solar Cell with More Than 3% Efficiency. J. Alloys Compd. 2019, 796, 160-166.
(48) Minemoto, T.; Matsui, T.; Takakura, H.; Hamakawa, Y.; Negami, T.; Hashimoto, Y.; Uenoyama, T; Kitagawa, M. Theoretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation. Sol. Energy Mater Sol. Cells 2001, 67, 83-88.
(49) Shiel, H.; Hutter, O. S.; Phillips, L. J.; Swallow, J. E. N.; Jones, L. A. H.; Featherstone, T. J.; Smiles, M. J.; Thakur, P. K.; Lee, T. L.; Dhanak, V. R.; Major, J. D.; Veal, T. D. Natural Band Alignments and Band Offsets of Sb2Se3 Solar Cells. ACS Appl. Energy Mater. 2020, 3, 11617 – 11626.
(50) Sugiyama, M.; Shimizu, T.; Kawade, D.; Ramya, K.; Reddy, K. T. R. Experimental Determination of Vacuum-Level Band Alignments of SnS-Based Solar Cells by Photoelectron Yield Spectroscopy. J. Appl. Phys. 2014, 115, 083508.
(51) Rana, T. R.; Kim, S. Y.; Kim, J. H.; Kim, K.; Yun, J. H. A Cd-Reduced Hybrid Buffer Layer of CdS/Zn(O,S) for Environmentally Friendly CIGS Solar Cells. Sustain. Energy Fuels 2017, 1, 1981–1990.
(52) Chantana, J.; Kato, T.; Sugimoto, H.; Minemoto, T. 20% Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light Soaking and Light-Soaking Processes. ACS Appl. Mater. Interfaces 2018, 10, 11361−11368.
(53) Larsen, J. K.; Larsson, F.; Törndahl, T.; Saini, N.; Riekehr, L.; Ren, Y.; Biswal, A.; Hauschild, D.; Weinhardt, L.; Heske, C.; Platzer-Björkman, C. Cadmium Free Cu2ZnSnS4 Solar Cells with 9.7% Efficiency. Adv. Energy Mater. 2019, 9, 1900439.
(54) Lee, J.; Enkhbat, T.; Han, G.; Sharif, M. H.; Enkhbayar, E.; Yoo, H.; Kim, J. H.; Kim, S. Y.; Kim, J. H. Over 11 % Efficient Eco-Friendly Kesterite Solar Cell: Effects of S-Enriched Surface of Cu2ZnSn(S,Se)4 Absorber and Band Gap Controlled (Zn,Sn)O Buffer, Nano Energy 2020, 78, 105206.
(55) Sun, L.; Haight, R.; Sinsermsuksakul, P.; Kim, S. B.; Park, H. H.; Gordon, R. G. Band Alignment of SnS/Zn(O,S) Heterojunctions in SnS Thin Film Solar Cells. Appl. Phys. Lett. 2013, 103, 181904.
(56) Hultqvist, A.; Platzer-Bjorkman, C.; Coronel, E.; Edoff, M. Experimental Investigation of Cu(In1-x,Gax)Se2/Zn(O1-z,Sz) Solar Cell Performance. Sol. Energy Mater. Sol. Cells 2011, 95, 497–503.
(57) Lancaster, D. K.; Sun, H.; George, S. M. Atomic Layer Deposition of Zn(O,S) Alloys Using Diethylzinc with H2O and H2S: Effect of Exchange Reactions. J. Phys. Chem. C 2017, 121, 18643−18652.
(58) Ikuno, T.; Suzuki, R.; Kitazumi, K.; Takahashi, N.; Kato, N.; Higuchi, K. SnS Thin Film Solar Cells with Zn1-xMgxO Buffer Layers, Appl. Phys. Lett. 2013, 102, 193901.
(59) Reddy, V. R. M.; Gedi, S.; Park, C.; Miles, R. W.; Ramakrishna Reddy K. T. Development of Sulphurized SnS Thin Flm Solar Cells. Curr. Appl. Phys. 2015, 15, 588-598.
(60) Pettersson, J.; Platzer-Björkman, C.; Edoff, M. Temperature-Dependent Current-Voltage and Light Soaking Measurements on Cu(In,Ga)Se2 Solar Cells with ALD-Zn1−xMgxO Buffer Layers. Prog. Photovolt: Res. Appl. 2009, 17, 460–469.
(61) A. O. Pudov, A. Kanevce, H. A. Al-Thani, J. R. Sites, F. S. Hasoon, Secondary Barriers in CdS–CuIn1−xGaxSe2 Solar Cells. J. Appl. Phys. 2005, 97, 064901.
(62) Kraut, E. A.; Grant, R. W.; Waldrop, J. R.; Eowalczyk, S. P. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials. Phys. Rev. Lett. 1980, 44, 1620.
(63) M. H. Chiu, C. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. S. Chang, C. H. Chen, M. Y. Chou, C. K. Shih, L. J. Li, Determination of Band Alignment in the Single-layer MoS2/WSe2 Heterojunction. Nat. Commun. 2015, 6, 7666.
(64) Dasgupta, U.; Bera, A.; Pal, A. J. Band Diagram of Heterojunction Solar Cells through Scanning Tunneling Spectroscopy. ACS Energy Lett. 2017, 2, 582-591.
(65) Y. P. Chiu, B. C. Huang, M. C. Shih, P. C. Huang, C. W. Chen, Atomic-scale Mapping of Electronic Structures Across Heterointerfaces by Cross-sectional Scanning Tunneling Microscopy. J. Phys.: Condens. Matter 2015, 27, 34300.
(66) H. J. Liu, J. C. Wang, D. Y. Cho, K. T. Ho, J. C. Lin, B. C. Huang, Y. W. Fang, Y. M. Zhu, Q. Z., L. Xie, X. Q. Pan, Y. P. Chiu, C. G. Duan, J. H. He, Y. H. Chu, Giant Photoresponse in Quantized SrRuO3 Monolayer at Oxide Interfaces. ACS Photonics 2018, 5, 1041−1049.
(67) P. C. Huang, S. K. Huang, T. C. Lai, M. C. Shih, H. C. Hsu, C. H. Chen, C. C. Lin, C. H. Chiang, C. Y. Lin, K. Tsukagoshi, C. W. Chen, Y. P. Chiu, S. F. Tsay, Y. C. Wang, Visualizing Band Alignment Across 2D/3D Perovskite Heterointerfaces of Solar Cells with Light-Modulated Scanning Tunneling Microscopy. Nano Energy 2021, 89, 106362.
(68) Li, K.; Chen, C.; Lu, S.; Wang, C.; Wang, S.; Lu, Y.; Tang, J. Orientation Engineering in Low-Dimensional Crystal-Structural Materials via Seed Screening. Adv. Mater. 2019, 31, 1903914.
(69) Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W.; Schropp, R. E. I.; Mai, Y. 9.2%-Efficient Core-Shell Structured Antimony Selenide Nanorod Array Solar Cells. Nat. Commun. 2019, 10, 125.
(70) Tang, R.; Wang, X.; Lian, W.; Huang , J.; Wei , Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang , C.; Xing , G.; Chen, S.; Zhu, C.; Hao, X.; Green, M. A.; Chen, T. Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency. Nat. Energy. 2020, 5, 587–595.
(71) Williams, R. E.; Ramasse, Q. M.; McKenna, K. P.; Phillips, L. J.; Yates, P. J.; Hutter, O. S.; Durose, K.; Major, J. D.; Mendis, B. G. Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 21730−21738.
(72) Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Lett. 2010, 10, 4128–4133.
(73) Wang, S.; Pacios, M.; Bhaskaran, H.; Warner, J. H. Substrate Control for Large Area Continuous Films of Monolayer MoS2 by Atmospheric Pressure Chemical Vapor Deposition, Nanotechnology 2016, 27, 085604.
(74) Lee, D.; Cho, J. Y.; Yun, H. S.; Lee, D. K.; Kim, T.; Bang, K.; Lee, Y. S.; Kim, H. Y.; Heo, J. Vapor Transport Deposited Tin Monosulfide for Thin-Film Solar Cells: Effect of Deposition Temperature and Duration. J. Mater. Chem. A 2019, 7, 7186-7193.
(75) López Varo, P.; Jiménez Tejada, J. A.; López Villanueva, J. A.; Deen, M. J. Space-charge and Injection Limited Current in Organic Diodes: A Unified Model. Org. Electron. 2014, 15, 2526–2535
(76) Xiao, J.; Chen, Z.; Zhang, G.; Li, Q. Y.; Yin, Q.; Jiang, X. F.; Huang, F.; Xu, Y. X.; Yip, H. L.; Cao, Y. Efficient Device Engineering for Inverted Non-fullerene Organic Solar Cells with Low Energy Loss. J. Mater. Chem. C 2018, 6, 4457.
(77) Wei, Z.; Chen, H.; Yan, K.; Zheng, X.; Yang, S. Hysteresis-free Multi-walled Carbon Nanotube-based Perovskite Solar Cells with a High Fill Factor. J. Mater. Chem. 2015, 3, 24226-24231.
(78) Jin, X.; Fang, Y.; Salim, T.; Feng, M.; Hadke, S.; Leow, S. W.; Sum, T. C.; Wong, L. H. In Situ Growth of [hk1]-Oriented Sb2S3 for Solution-Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. Adv. Funct. Mater. 2020, 3, 2002887.
(79) Mitchell, K. W.; Fahrenbruch, A. L.; Bube, R. H. Evaluation of the CdS/CdTe Heterojunction Solar Cell. J. Appl. Phys. 1977, 48, 10.
(80) Naby, M. A.; Zekry, A.; Akkad, F. E.; Ragaie, H. F. Dependence of Dark Current on Zinc Concentration in ZnxCd1−xS/ZnTe Heterojunctions. Sol. Energy Mater. Sol. Cells 1993, 29, 97-108.
(81) Rana, A.; Kumar, A.; Rahman, M. W.; Vashistha, N.; Garg, K. K.; Pandey, S.; Sahoo, N. G.; Chand, S.; Singh, R. K. Non-approximated Series Resistance Evaluation by Considering High Ideality Factor in Organic Solar Cell. AIP Advances 2018, 8, 125121.
(82) Chua, D.; Kim, S. B.; Sinsermsuksakul, P.; Gordon, R. Atomic Layer Deposition of Energy Band Tunable Tin Germanium Oxide Electron Transport Layer for the SnS-Based Solar Cells with 400 mV Open-Circuit Voltage. Appl. Phys. Lett. 2019, 114, 213901.
(83) Lee, J.; Enkhbat, T.; Han, G.; Sharif, M. H.; Enkhbayar, E.; Yoo, H.; Kim, J. H.; Kim, S. Y.; Kim, J. H. Over 11 % Efficient Eco-Friendly Kesterite Solar Cell: Effects of S-Enriched Surface of Cu2ZnSn(S,Se)4 Absorber and Band Gap Controlled (Zn,Sn)O Buffer. Nano Energy 2020, 78, 105206.
(84) Lindahl, J.; Wätjen, J. T.; Hultqvist, A.; Ericson, T.; Edoff, M.; Törndahl, T. The Effect of Zn1-xSnxOy Buffer Layer Thickness in 18.0% Efficient Cd-Free Cu(In,Ga)Se2 Solar Cells. Prog. Photovolt. 2013, 21, 1588-1597.
(85) Li, X.; Su, Z.; Venkataraj, S.; Batabyal, S. K.; Wong, L. H. 8.6% Efficiency CZTSSe Solar Cell with Atomic Layer Deposited Zn-Sn-O Buffer Layer. Sol. Energy Mater Sol. Cells 2016, 157, 101–107.
(86) Ericson, T.; Larsson, F.; Törndahl, T.; Frisk, C.; Larsen, J.; Kosyak, V.; Hägglund, C.; Li, S.; Platzer-Björkman, C. Zinc-Tin-Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd-Free Cu2ZnSnS4 Solar Cell. Sol. RRL 2017, 1, 1700001.
(87) Shih, M. C.; Li, S. S.; Hsieh, C. H.; Wang, Y. C.; Yang, H. D.; Chiu, Y. P.; Chang, C. S.; Chen, C. W. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy. Nano Lett. 2017, 17, 1154−1160.
(88) Chen, W. C.; Chen, C. Y.; Lin, Y. R.; Chang, J. K.; Chen, C. H.; Chiu, Y. P.; Wu, C. I.; Chen, K. H.; Chen, L. C. Interface Engineering of CdS/CZTSSe Heterojunctions for Enhancing the Cu2ZnSn(S,Se)4 Solar Cell Efficiency. Mater. Today Energy 2019, 13, 256-266.
(89) Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis Using EDTA-Complexed SnO2. Nat. Commun. 2018, 9, 3239.
(90) Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C. C.; Yip, H. L.; Zhu, Z.; Jen, A. K. Y. Highly Efficient All-Inorganic Perovskite Solar Cells with Suppressed Non-Radiative Recombination by a Lewis Base. Nat. Commun. 2020, 11, 177.
(91) Shen, K.; Zhang, Y.; Wang, X.; Ou, C.; Guo, F.; Zhu, H.; Liu, C.; Gao, Y.; Schropp, R. E. I.; Li, Z.; Liu, X.; Mai, Y. Efficient and Stable Planar n–i–p Sb2Se3 Solar Cells Enabled by Oriented 1D Trigonal Selenium Structures. Adv. Sci. 2020, 7, 2001013.
(92) Enkhbat, T.; Kim, S. Y.; Kim, J. H. Device Characteristics of Bandgap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water Based Solution. ACS Appl. Mater. Interfaces 2019, 11, 36735–36741.
指導教授 陳賜原 陳貴賢 林麗瓊(Szu-Yuan Chen Kuei-Hsien Chen Li-Chyong Chen) 審核日期 2022-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明