博碩士論文 105282604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.16.79.154
姓名 郭霞翰(Shaham Quadir)  查詢紙本館藏   畢業系所 物理學系
論文名稱 藉由陽離子替換(AgxCu1-x)2ZnSnSe4光伏吸收層以解析銅基硫銅錫鋅礦的缺陷性質
(Revealing the defect properties of Cu-based kesterite photovoltaic absorber (AgxCu1-x)2ZnSnSe4 through cation substitution)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 薄膜太陽能電池普遍具有良好的光吸收能力、短能源回收期以及高可撓性,因此可以應用在廣泛的能源領域中。近年來,無毒且地表豐富的硫銅錫鋅礦(Cu2ZnSn(S,Se)4)太陽能電池引起許多的關注。但是近十年來的研究仍舊無法克服CZTS/Se太陽能電池開路電壓缺失的問題。為了克服開路電壓缺失的瓶頸,深度探討材料本質特性是不可避免的。本研究將使用各式的材料分析技術探索CZTSe太陽能電池材料本身的極限。
嚴重影響CZTSe太陽能電池光電轉換效率的其中一項關鍵原因是CZTSe材料存在的本質缺陷(點缺陷/缺陷團簇)。但是目前的文獻中,陽離子錯位缺陷的特性探索與調控仍舊是個極大的挑戰。因此本研究藉由將銀摻雜進入CZTSe晶體中,進行陽離子替換來調控並鈍化CZTSe能隙中的缺陷能態。本實驗為了能詳盡的探討(AgxCu1-x)2ZnSnSe4(ACZTSe)的缺陷能態特性,因此合成了不同比例的ACZTSe薄膜吸收層(x=Ag/(Ag/Cu),x = 0.00、0.05、0.10、0.15、0.20)。變強度的低溫光激發螢光光譜的量測結果顯示10%摻雜的ACZTSe具有最淺層的缺陷能態以及較少的非輻射複合。第一原理計算結果也顯示銀摻雜可抑制有害的缺陷產生,同時促進有益的缺陷形成。在太陽能電池元件表現方面,10%摻雜的ACZTSe太陽能電池在開路電壓的表現有顯著的提升,光電轉換效率可以達到10.2%。
為了理解ACZTSe材料的的陽離子錯位、缺陷濃度、整體長程晶體排列以及局部原子結構之間的關係,因此本研究結合了中子衍射以及同步輻射光源的X射線吸收技術進行材料分析。並利用Rietveld精算法量化CZTSe以及ACZTSe粉末樣品中的缺陷濃度。陽離子分布則被用來作為量化本質點缺陷的依據。精算結果發現銀摻雜可以有效的抑制CuZn錯位的深層缺陷並同時促進淺層缺陷的形成(Cu空缺),進一步的改善太陽能電池的光電轉換效率。此外,本實驗將X射線吸收光譜作為函數進一步分析ACZTSe的原子結構,從X光近緣吸收光譜(XANES)以及延伸X光吸收精細結構(EXAFS)結果可以獲得最近殼層的結構、氧化態以及電荷轉移機制(偵測元素周圍的電子佔據狀態)
摘要(英) Renewable energy sources based on thin film solar cells (TFSC) can effectively contribute in a wide variety of energy field due to their higher light absorbance, shorter energy payback time, and high flexibility. Recently, researches on earth-abundant and non-toxic kesterite based Cu2ZnSn(S,Se)4 (CZTS/Se) solar cell has sparked a lot of attention in the photovoltaic sector. However, large open-circuit voltage deficit (VOC,def) issue in CZTS/Se solar cell remains unsolved even after a decade of research and development. Therefore, in-depth research to solve fundamental bottlenecks are required to address the VOC,def issue. This thesis focuses on investigating the fundamental limitations of CZTSe solar cells, in particular the large VOC,def, by different characterization techniques.
One of the reasons that substantially impairs the photovoltaic (PV) performance of CZTSe is occurrence of intrinsic point/cluster defects. Understanding the nature of and controlling cation disorder remains a crucial challenge for improving their PV performances. Herein, a cation substitution method has been introduced to control and passivate the defect states in bandgap of CZTSe by incorporating Ag. Different x values of (AgxCu1-x)2ZnSnSe4 (ACZTSe) thin film absorbers were synthesized, where x = Ag/(Ag+Cu), i.e., with ratios of x = 0.00, 0.05, 0.10, 0.15, and 0.20 to provide a comprehensive understanding of defect states for ACZTSe solar cell. Intensity-dependent low-temperature photoluminescence measurements show that 10% Ag-alloyed CZTSe provides the shallowest defect states and less nonradiative recombination. It is also illustrated by first-principles calculations that Ag alloying enables the formation and suppresses the beneficial and detrimental defects, respectively. The best power conversion efficiency of 10.2% is achieved for the 10% Ag-alloyed CZTSe cell, along with an enhanced open-circuit voltage.
To determine the relationships among cation disorder, defect concentration, overall long-range crystallographic order, and local atomic-scale structure for (AgxCu1−x)2ZnSnSe4 (ACZTSe) material, the combination of neutron diffraction and synchrotron-based x-ray absorption techniques are implemented. The joint Rietveld refinement technique is used to quantify the concentration of defects in Ag-alloyed stoichiometric and non-stoichiometric Cu2ZnSnSe4 (CZTSe) powder samples. As main outcome, the cation distribution was determined to quantify the intrinsic point defects. This directly shows that Ag effectively inhibit the high concentration of the deep CuZn antisite and promotes shallower defects such as Cu-vacancy (VCu), which is important for improved device performance. Moreover, we studied the atomic-scale structure of ACZTSe as a function of composition using x-ray absorption spectroscopy (XAS). X-ray absorption near-edge structure (XANES) and extended X-ray fine structure (EXAFS) analyses of the nearest neighbor shell has been performed by simultaneous fitting of all K-edges to determine oxidation states, charge transfer mechanism (reflecting the occupancy of electronic states at/near the probed element) and structural parameters, respectively.
關鍵字(中) ★ 缺陷
★ 光伏裝置
★ 光致發光
★ 硫銅錫鋅礦
★ 中子衍射技術
關鍵字(英) ★ Defects
★ photovoltaics
★ photoluminescence
★ kesterite
★ Neutron powder diffraction
論文目次 論文摘要 i
Abstract ii
Acknowledgments v
Tables of Content vii
List of Figures x
List of Tables xiv
List of Abbreviations xvi
Chapter 1 1
1. Introduction 1
1.1 Global energy issue and solar power 1
1.2 History of solar cells 3
1.3 Kesterite solar cell 4
1.4 Kesterite crystal structure 9
1.5 Cationic disorder in CZTSe materials 10
1.6 Thesis layout 11
Chapter 2 14
2. Material and device characterization techniques 14
2.1 Introduction 14
2.2 X-ray absorption spectroscopy (XAS) 14
2.2.1 X-ray absorption near edge structure (XANES) 15
2.2.2 Extended X-ray absorption fine structure spectroscopy (EXAFS) 16
2.3 Diffraction techniques 17
2.3.1 Powder X-ray diffraction (PXRD) 17
2.3.2 Neutron powder diffraction (NPD) 18
2.4 Rietveld refinement 20
2.5 Photoluminescence 21
2.6 Thin film and device fabrication 23
2.7 Powder sample synthesis by solid state method 24
Chapter 3 26
3.1 Introduction 26
3.2 Experimental Section 28
3.2.1 Film preparation 28
3.2.2 Characterization 29
3.2.3 Device fabrication 30
3.3 DFT calculation 31
3.3.1. Methodology of DFT calculations 31
3.3.2 The formation enthalpy calculation 32
3.3.3 The stable region of CZTSe 33
3.4 Result and discussions 34
3.4.1 Crystal structure and microstructure 34
3.4.2 Device performance 38
3.4.3 Recombination mechanisms 40
3.5 Summary 48
Chapter 4 49
4.1 Introduction 49
4.2. Experimental Methods 52
4.2.1. Sample preparation 52
4.2.2. Characterizations 52
4.3. Result and Discussions 54
4.3.1. Structural Characterization 54
4.3.2. Optical properties 57
4.3.3. Short-range disorder analyses by X-ray absorption spectroscopy 60
4.3.4. Long-range disorder analyses by neutron diffraction experiment 64
4.4. Conclusion 70
Chapter 5 72
5.1 Summary 72
5.2. Future perspective 73
References 76
Appendix 91
List of publications 99
Awards and distinctions 100
Cover gallery 101
參考文獻 1. International energy agency. 2020.
2. Jacobson, M. Z.; Delucchi, M. A.; Bauer, Z. A.; Goodman, S. C.; Chapman, W. E.; Cameron, M. A.; Bozonnat, C.; Chobadi, L.; Clonts, H. A.; Enevoldsen, P., 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1 (1), 108-121.
3. Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E. G.; König-Langlo, G., The global energy balance from a surface perspective. Clim. Dyn. 2013, 40 (11), 3107-3134.
4. Feldman, D.; Ramasamy, V.; Fu, R.; Ramdas, A.; Desai, J.; Margolis, R. US solar photovoltaic system and energy storage cost benchmark: Q1 2020; National Renewable Energy Lab.(NREL), Golden, CO (United States): 2021.
5. Knier, G., How do photovoltaics work. Science@ NASA 2002.
6. Todorov, T. K.; Singh, S.; Bishop, D. M.; Gunawan, O.; Lee, Y. S.; Gershon, T. S.; Brew, K. W.; Antunez, P. D.; Haight, R., Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat. Commun. 2017, 8 (1), 1-8.
7. Green, M. A., Photovoltaic technology and visions for the future. Progress in Energy 2019, 1 (1), 013001.
8. Lee, T. D.; Ebong, A. U., A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews 2017, 70, 1286-1297.
9. Hall, R.; Birkmire, R.; Phillips, J.; Meakin, J., Thin‐film polycrystalline Cu2S/Cd1− xZnxS solar cells of 10% efficiency. Appl. Phys. Lett. 1981, 38 (11), 925-926.
10. Fai, T. Investigating the Open-Circuit Voltage Deficit in Cu2ZnSn(S, Se)4 Solar Cells. PhD dissertation, Nanyang Technological University, Singapore, 2015.
11. Shockley, W.; Queisser, H. J., Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 1961, 32 (3), 510-519.
12. Mitzi, D. B.; Gunawan, O.; Todorov, T. K.; Barkhouse, D. A. R., Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2013, 371 (1996), 20110432.
13. Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokota, T., Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-Beam evaporated precursors. Sol. Energy Mater. Sol. Cells 1997, 49 (1-4), 407-414.
14. Mitzi, D. B.; Gunawan, O.; Todorov, T. K.; Wang, K.; Guha, S., The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 2011, 95 (6), 1421-1436.
15. Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B., Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv. Energy Mater. 2014, 4 (7), 1301465.
16. Okano, M.; Yamashita, G.; Nagai, M.; Ashida, M.; Nagaoka, A.; Yoshino, K.; Kanemitsu, Y., Free-carrier dynamics and band tails in Cu2ZnSn(SxSe1− x)4: Evaluation of factors determining solar cell efficiency. Phys. Rev. B: Condens. Matter 2015, 92 (11), 115204.
17. Ericson, T.; Larsson, F.; Törndahl, T.; Frisk, C.; Larsen, J.; Kosyak, V.; Hägglund, C.; Li, S.; Platzer‐Björkman, C., Zinc‐Tin‐Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd‐Free Cu2ZnSnS4 Solar Cell. Solar RRL 2017, 1 (5), 1700001.
18. Steirer, K. X.; Garris, R. L.; Li, J. V.; Dzara, M. J.; Ndione, P. F.; Ramanathan, K.; Repins, I.; Teeter, G.; Perkins, C. L., Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells. Phys. Chem. Chem. Phys. 2015, 17 (23), 15355-15364.
19. Sze, S. M.; Li, Y.; Ng, K. K., Physics of semiconductor devices. John wiley & sons: 2021.
20. https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve#footnote1_h2927uh.
21. Sze, S. M., Semiconductor devices: physics and technology. John wiley & sons: 2008.
22. Shin, D.; Saparov, B.; Mitzi, D. B., Defect engineering in multinary earth‐abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 2017, 7 (11), 1602366.
23. Chen, S.; Walsh, A.; Gong, X. G.; Wei, S. H., Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers. Adv. Mater. 2013, 25 (11), 1522-1539.
24. Bishop, D. M., Fabrication and modification of defects in Cu2ZnSnSe4 single crystals and thin films. 2016, p7.
25. Ito, K., Copper zinc tin sulfide-based thin film solar cells. Wiley 2014.
26. Chen, S.; Walsh, A.; Luo, Y.; Yang, J.-H.; Gong, X.; Wei, S.-H., Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B: Condens. Matter 2010, 82 (19), 195203.
27. Giraldo, S.; Jehl, Z.; Placidi, M.; Izquierdo‐Roca, V.; Pérez‐Rodríguez, A.; Saucedo, E., Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 2019, 31 (16), 1806692.
28. Turnbull, M. J., Layer-by-Layer Construction Strategies Towards Efficient CZTS Solar Cells. 2018, p.9.
29. Teo, B. K., EXAFS: basic principles and data analysis. Springer Science & Business Media: 2012; Vol. 9.
30. Ritter, K., Local atomic structure of kesterite type materials. 2021, p17-21.
31. Koningsberger, D. C.; Prins, R., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. 1987.
32. Bragg, W. L., The diffraction of short electromagnetic waves by a crystal. Scientia 1929, 23 (45).
33. Rietveld, H. M., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2 (2), 65-71.
34. Cardona, M.; Peter, Y. Y., Fundamentals of semiconductors. Springer: 2005, Chapter 4.
35. Lee, T. D.; Ebong, A. U., A review of thin film solar cell technologies and challenges. Renewable Sustainable Energy Rev. 2017, 70, 1286.
36. Green, M. A., Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci.: Mater. Electron. 2007, 18 (1), 15.
37. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A., Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517 (7), 2455.
38. Guo, Q.; Hillhouse, H. W.; Agrawal, R., Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 2009, 131 (33), 11672.
39. Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X., Solar cell efficiency tables (version 56). Prog. Photovoltaics Res. Appl. 2020, 28 (NREL/JA-5900-77544).
40. Shockley, W.; Queisser, H. J., Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 1961, 32 (3), 510.
41. Liu, X.; Feng, Y.; Cui, H.; Liu, F.; Hao, X.; Conibeer, G.; Mitzi, D. B.; Green, M., The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovoltaics Res. Appl. 2016, 24 (6), 879.
42. Bourdais, S.; Choné, C.; Delatouche, B.; Jacob, A.; Larramona, G.; Moisan, C.; Lafond, A.; Donatini, F.; Rey, G.; Siebentritt, S., Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 2016, 6 (12), 1502276.
43. Siebentritt, S., High voltage, please! Nat. Energy 2017, 2 (11), 840.
44. Polizzotti, A.; Repins, I. L.; Noufi, R.; Wei, S.-H.; Mitzi, D. B., The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 2013, 6 (11), 3171.
45. Gokmen, T.; Gunawan, O.; Todorov, T. K.; Mitzi, D. B., Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 2013, 103 (10), 103506.
46. Risch, L.; Vauche, L.; Redinger, A.; Dimitrievska, M.; Sánchez, Y.; Saucedo, E.; Unold, T.; Goislard, T.; Ruiz, C.; Escoubas, L. In Overcoming the Voc limitation of CZTSe solar cells, PVSC, USA, June, 2016, IEEE: USA, June, 2016; p 0188.
47. Yan, C.; Huang, J.; Sun, K.; Johnston, S.; Zhang, Y.; Sun, H.; Pu, A.; He, M.; Liu, F.; Eder, K., Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 2018, 3 (9), 764.
48. Hong, H. K.; Kim, I. Y.; Shin, S. W.; Song, G. Y.; Cho, J. Y.; Gang, M. G.; Shin, J. C.; Kim, J. H.; Heo, J., Atomic layer deposited zinc oxysulfide n-type buffer layers for Cu2ZnSn(S, Se)4 thin film solar cells. Sol. Energy Mater. Sol. Cells 2016, 155, 43.
49. Hauschild, D.; Mezher, M.; Schnabel, T.; Spiering, S.; Kogler, W.; Carter, J.; Blum, M.; Yang, W.; Ahlswede, E.; Heske, C., Intermixing at the InxSy/Cu2ZnSn(S,Se)4 Heterojunction and Its Impact on the Chemical and Electronic Interface Structure. ACS Appl. Energy Mater. 2019, 2 (6), 4098.
50. Siol, S.; Dhakal, T. P.; Gudavalli, G. S.; Rajbhandari, P. P.; DeHart, C.; Baranowski, L. L.; Zakutayev, A., Combinatorial reactive sputtering of In2S3 as an alternative contact layer for thin film solar cells. ACS Appl. Mater. Interfaces 2016, 8 (22), 14004.
51. Grenet, L.; Emieux, F.; Andrade-Arvizu, J.; De Vito, E.; Lorin, G.; Sanchez, Y.; Saucedo, E.; Roux, F., Sputtered ZnSnO Buffer Layers for Kesterite Solar Cells. ACS Appl. Energy Mater. 2020, 3 (2), 1883.
52. Platzer-Björkman, C.; Frisk, C.; Larsen, J.; Ericson, T.; Li, S.-Y.; Scragg, J.; Keller, J.; Larsson, F.; Törndahl, T., Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1− xSnxOy buffer layers. Appl. Phys. Lett 2015, 107 (24), 243904.
53. Ericson, T.; Larsson, F.; Törndahl, T.; Frisk, C.; Larsen, J.; Kosyak, V.; Hägglund, C.; Li, S.; Platzer‐Björkman, C., Zinc‐Tin‐Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd‐Free Cu2ZnSnS4 Solar Cell. Sol. RRL 2017, 1 (5), 1700001.
54. Chen, C.-Y.; Aprillia, B. S.; Chen, W.-C.; Teng, Y.-C.; Chiu, C.-Y.; Chen, R.-S.; Hwang, J.-S.; Chen, K.-H.; Chen, L.-C., Above 10% efficiency earth-abundant Cu2ZnSn (S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts. Nano Energy 2018, 51, 597.
55. Erkan, M. E.; Chawla, V.; Repins, I.; Scarpulla, M. A., Interplay between surface preparation and device performance in CZTSSe solar cells: Effects of KCN and NH4OH etching. Sol. Energy Mater. Sol. Cells 2015, 136, 789.
56. Xie, H.; Sánchez, Y.; López-Marino, S.; Espíndola-Rodríguez, M.; Neuschitzer, M.; Sylla, D.; Fairbrother, A.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E., Impact of Sn (S, Se) secondary phases in Cu2ZnSn(S, Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation. ACS Appl. Mater. Interfaces 2014, 6 (15), 12744.
57. Kanevce, A.; Repins, I.; Wei, S.-H., Impact of bulk properties and local secondary phases on the Cu2(Zn, Sn)Se4 solar cells open-circuit voltage. Sol. Energy Mater. Sol. Cells 2015, 133, 119.
58. Schorr, S., The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 2011, 95 (6), 1482.
59. Shin, D.; Saparov, B.; Mitzi, D. B., Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials. Adv. Energy Mater. 2017, 7 (11), 1602366.
60. Chen, S.; Wang, L.-W.; Walsh, A.; Gong, X.; Wei, S.-H., Abundance of CuZn+ SnZn and 2CuZn+ SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 2012, 101 (22), 223901.
61. Chen, S.; Walsh, A.; Gong, X. G.; Wei, S. H., Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers. Adv. Mater. 2013, 25 (11), 1522.
62. Mutter, D.; Dunham, S. T., Calculation of defect concentrations and phase stability in Cu2ZnSnS4 and Cu2ZnSnSe4 from stoichiometry. IEEE J. Photovoltaics 2015, 5 (4), 1188.
63. Su, Z.; Tan, J. M. R.; Li, X.; Zeng, X.; Batabyal, S. K.; Wong, L. H., Cation substitution of solution‐processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater. 2015, 5 (19), 1500682.
64. Shin, D.; Zhu, T.; Huang, X.; Gunawan, O.; Blum, V.; Mitzi, D. B., Earth‐abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S, Se)4 absorber. Adv. Mater. 2017, 29 (24), 1606945.
65. Zhu, T.; Huhn, W. P.; Wessler, G. C.; Shin, D.; Saparov, B.; Mitzi, D. B.; Blum, V., I2–II–IV–VI4 (I= Cu, Ag; II= Sr, Ba; IV= Ge, Sn; VI= S, Se): Chalcogenides for Thin-Film Photovoltaics. Chem. Mater. 2017, 29 (18), 7868.
66. Hadke, S.; Chen, W.; Tan, J. M. R.; Guc, M.; Izquierdo-Roca, V.; Rignanese, G.-M.; Hautier, G.; Wong, L. H., Effect of Cd on cation redistribution and order-disorder transition in Cu2(Zn, Cd)SnS4. J. Mater. Chem. A 2019, 7 (47), 26927-26933.
67. Hadke, S.; Levcenko, S.; Sai Gautam, G.; Hages, C. J.; Márquez, J. A.; Izquierdo‐Roca, V.; Carter, E. A.; Unold, T.; Wong, L. H., Suppressed Deep Traps and Bandgap Fluctuations in Cu2CdSnS4 Solar Cells with≈ 8% Efficiencys. Adv. Energy Mater. 2019, 9 (45), 1902509.
68. Márquez, J.; Stange, H.; Hages, C. J.; Schaefer, N.; Levcenko, S.; Giraldo, S.; Saucedo, E.; Schwarzburg, K.; Abou-Ras, D.; Redinger, A., Chemistry and dynamics of Ge in kesterite: toward band-gap-graded absorbers. Chem. Mater. 2017, 29 (21), 9399.
69. Tian, Q.; Liu, S. F., Defect suppression in multinary chalcogenide photovoltaic materials derived from kesterite: progress and outlook. J. Mater. Chem. A 2020, 8 (47), 24920-24942.
70. Du, Y.; Wang, S.; Tian, Q.; Zhao, Y.; Chang, X.; Xiao, H.; Deng, Y.; Chen, S.; Wu, S.; Liu, S., Defect Engineering in Earth‐Abundant Cu2ZnSn (S,Se)4 Photovoltaic Materials via Ga3+‐Doping for over 12% Efficient Solar Cells. Adv. Funct. Mater. 2021, 31 (16), 2010325.
71. Yuan, Z. K.; Chen, S.; Xiang, H.; Gong, X. G.; Walsh, A.; Park, J. S.; Repins, I.; Wei, S. H., Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu‐and Ag‐based kesterite compounds. Adv. Funct. Mater. 2015, 25 (43), 6733-6743.
72. Bernhardt, D.; Reilly, I., Mineral commodity summaries 2020. US Geological Survey 2020.
73. Gershon, T.; Lee, Y. S.; Antunez, P.; Mankad, R.; Singh, S.; Bishop, D.; Gunawan, O.; Hopstaken, M.; Haight, R., Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1–x)2ZnSnSe4. Adv. Energy Mater. 2016, 6 (10), 1502468.
74. Chagarov, E.; Sardashti, K.; Kummel, A. C.; Lee, Y. S.; Haight, R.; Gershon, T. S., Ag2ZnSn(S, Se)4: A highly promising absorber for thin film photovoltaics. J. Chem. Phys. 2016, 144 (10), 104704.
75. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter 1999, 59 (3), 1758.
76. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 1996, 54 (16), 11169.
77. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.
78. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B: Condens. Matter 1991, 44 (3), 943.
79. Sai Gautam, G.; Senftle, T. P.; Carter, E. A., Understanding the effects of Cd and Ag doping in Cu2ZnSnS4 solar cells. Chem. Mater. 2018, 30 (14), 4543.
80. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118 (18), 8207.
81. Guchhait, A.; Su, Z.; Tay, Y. F.; Shukla, S.; Li, W.; Leow, S. W.; Tan, J. M. R.; Lie, S.; Gunawan, O.; Wong, L. H., Enhancement of open-circuit voltage of solution-processed Cu2ZnSnS4 solar cells with 7.2% efficiency by incorporation of silver. ACS Energy Lett. 2016, 1 (6), 1256.
82. Zhao, Y.; Han, X.; Xu, B.; Li, W.; Li, J.; Li, J.; Wang, M.; Dong, C.; Ju, P.; Li, J., Enhancing open-circuit voltage of solution-processed Cu2ZnSn(S,Se)4 solar cells with Ag substitution. IEEE J. Photovoltaics 2017, 7 (3), 874.
83. Bishop, D.; Gershon, T.; Lee, Y. S.; Antunez, P.; Mankad, R.; Singh, S.; Gunawan, O.; Haight, R. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Oregon, U., Ed. IEEE: 2016; pp 0173-0178.
84. Li, J.; Zhang, Y.; Zhao, W.; Nam, D.; Cheong, H.; Wu, L.; Zhou, Z.; Sun, Y., A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv. Energy Mater. 2015, 5 (9), 1402178.
85. Nishiwaki, S.; Kohara, N.; Negami, T.; Wada, T., MoSe2 layer formation at Cu (In, Ga)Se2/Mo Interfaces in High Efficiency Cu(In1-xGax)Se2 Solar Cells. Jpn. J. Appl. Phys. 1998, 37 (1A), L71.
86. Gürel, T.; Sevik, C.; Çağın, T., Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B: Condens. Matter 2011, 84 (20), 205201.
87. Amiri, N. B. M.; Postnikov, A., Electronic structure and lattice dynamics in kesterite-type Cu2ZnSnSe4 from first-principles calculations. Phys. Rev. B: Condens. Matter 2010, 82 (20), 205204.
88. Gurieva, G.; Márquez, J. A.; Franz, A.; Hages, C. J.; Levcenko, S.; Unold, T.; Schorr, S., Effect of Ag incorporation on structure and optoelectronic properties of (Ag1− xCux)2ZnSnSe4 solid solutions. Phys. Rev. Mater. 2020, 4 (5), 054602.
89. Hadke, S. H.; Levcenko, S.; Lie, S.; Hages, C. J.; Márquez, J. A.; Unold, T.; Wong, L. H., Synergistic Effects of Double Cation Substitution in Solution‐Processed CZTS Solar Cells with over 10% Efficiency. Adv. Energy Mater. 2018, 8 (32), 1802540.
90. Huang, W.-C.; Wei, S.-Y.; Cai, C.-H.; Ho, W.-H.; Lai, C.-H., The role of Ag in aqueous solution processed (Ag,Cu)2 ZnSn(S,Se) 4 kesterite solar cells: antisite defect elimination and importance of Na passivation. J. Mater. Chem. A 2018, 6 (31), 15170.
91. Shin, B.; Zhu, Y.; Bojarczuk, N. A.; Jay Chey, S.; Guha, S., Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Appl. Phys. Lett. 2012, 101 (5), 053903.
92. Williams, B. L.; Smit, S.; Kniknie, B. J.; Bakker, K. J.; Keuning, W.; Kessels, W.; Schropp, R. E.; Creatore, M., Identifying parasitic current pathways in CIGS solar cells by modelling dark J–V response. Prog. Photovoltaics Res. Appl. 2015, 23 (11), 1516.
93. Tai, K. F.; Gershon, T.; Gunawan, O.; Huan, C. H. A., Examination of electronic structure differences between CIGSSe and CZTSSe by photoluminescence study. J. Appl. Phys. 2015, 117 (23), 235701.
94. Tai, K. F. Investigating the Open-Circuit Voltage Deficit in Cu2ZnSn(S, Se)4 Solar Cells. Ph. D. Thesis, Nanyang Technological University, Singapore, 2016., 2015.
95. Tai, K. F.; Fu, D.; Chiam, S. Y.; Huan, C. H. A.; Batabyal, S. K.; Wong, L. H., Antimony Doping in Solution‐processed Cu2ZnSn(S,Se)4 Solar Cells. ChemSusChem 2015, 8 (20), 3504-3511.
96. Gershon, B. T.; Lee, Y. S.; Mankad, R.; Gunawan, O.; Gokmen, T.; Bishop, D.; McCandless, B.; Guha, S., The impact of sodium on the sub-bandgap states in CZTSe and CZTS. Appl. Phys. Lett. 2015, 106 (12), 123905.
97. Crovetto, A.; Hansen, O., What is the band alignment of Cu2ZnSn (S, Se)4 solar cells? Sol. Energy Mater. Sol. Cells 2017, 169, 177-194.
98. Tiwari, D.; Skidchenko, E.; Bowers, J. W.; Yakushev, M. V.; Martin, R. W.; Fermin, D. J., Spectroscopic and electrical signatures of acceptor states in solution processed Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. C 2017, 5 (48), 12720.
99. Chen, S.; Gong, X.; Walsh, A.; Wei, S.-H., Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 2010, 96 (2), 021902.
100. Dimitrievska, M.; Fairbrother, A.; Saucedo, E.; Pérez-Rodríguez, A.; Izquierdo-Roca, V., Secondary phase and Cu substitutional defect dynamics in kesterite solar cells: impact on optoelectronic properties. Sol. Energy Mater. Sol. Cells 2016, 149, 304.
101. Qi, Y.-F.; Kou, D.-X.; Zhou, W.-H.; Zhou, Z.-J.; Tian, Q.-W.; Meng, Y.-N.; Liu, X.-S.; Du, Z.-L.; Wu, S.-X., Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells. Energy Environ. Sci. 2017, 10 (11), 2401-2410.
102. Yuan, Z.-K.; Chen, S.; Xiang, H.; Gong, X.-G.; Walsh, A.; Park, J.-S.; Repins, I.; Wei, S.-H., Engineering Solar Cell Absorbers by Exploring the Band Alignment and Defect Disparity: The Case of Cu- and Ag-Based Kesterite Compounds. Adv. Funct. Mater. 2015, 25 (43), 6733-6743.
103. Yang, H.; Jauregui, L. A.; Zhang, G.; Chen, Y. P.; Wu, Y., Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett. 2012, 12 (2), 540-545.
104. Shi, X.; Huang, F.; Liu, M.; Chen, L., Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1− xInxSe4. Appl. Phys. Lett. 2009, 94 (12), 122103.
105. Lee, T. D.; Ebong, A. U., A review of thin film solar cell technologies and challenges. Renewable Sustainable Energy Rev. 2017, 70, 1286-1297.
106. Syum, Z.; Billo, T.; Sabbah, A.; Venugopal, B.; Yu, S.-Y.; Fu, F.-Y.; Wu, H.-L.; Chen, L.-C.; Chen, K.-H., Copper Zinc Tin Sulfide Anode Materials for Lithium-Ion Batteries at Low Temperature. ACS Sustainable Chem. Eng. 2021, 9 (27), 8970-8979.
107. Chiu, J. M.; Chen, E. M.; Lee, C. P.; Shown, I.; Tunuguntla, V.; Chou, J. S.; Chen, L. C.; Chen, K. H.; Tai, Y., Geogrid‐Inspired Nanostructure to Reinforce a CuxZnySnzS Nanowall Electrode for High‐Stability Electrochemical Energy Conversion Devices. Adv. Energy Mater. 2017, 7 (12), 1602210.
108. Chiu, J.-M.; Chou, T.-C.; Wong, D. P.; Lin, Y.-R.; Shen, C.-A.; Hy, S.; Hwang, B.-J.; Tai, Y.; Wu, H.-L.; Chen, L.-C., A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage. Nano Energy 2018, 44, 438-446.
109. Adhi Wibowo, R.; Soo Lee, E.; Munir, B.; Ho Kim, K., Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films. Phys. Status Solidi A 2007, 204 (10), 3373-3379.
110. Ahn, S.; Jung, S.; Gwak, J.; Cho, A.; Shin, K.; Yoon, K.; Park, D.; Cheong, H.; Yun, J. H., Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values. Appl. Phys. Lett. 2010, 97 (2), 021905.
111. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A., Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517 (7), 2455-2460.
112. Sun, K.; Yan, C.; Huang, J.; Liu, F.; Li, J.; Sun, H.; Zhang, Y.; Cui, X.; Wang, A.; Fang, Z., Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry. J. Mater. Chem. A 2019, 7 (48), 27289-27296.
113. Li, X.; Zhuang, D.; Zhang, N.; Zhao, M.; Yu, X.; Liu, P.; Wei, Y.; Ren, G., Achieving 11.95% efficient Cu2ZnSnSe4 solar cells fabricated by sputtering a Cu–Zn–Sn–Se quaternary compound target with a selenization process. J. Mater. Chem. A 2019, 7 (16), 9948-9957.
114. Green, M.; Dunlop, E.; Hohl‐Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X., Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. Appl. 2021, 29 (1), 3-15.
115. Polizzotti, A.; Repins, I. L.; Noufi, R.; Wei, S.-H.; Mitzi, D. B., The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 2013, 6 (11), 3171-3182.
116. Chen, C.-Y.; Aprillia, B. S.; Chen, W.-C.; Teng, Y.-C.; Chiu, C.-Y.; Chen, R.-S.; Hwang, J.-S.; Chen, K.-H.; Chen, L.-C., Above 10% efficiency earth-abundant Cu2ZnSn(S, Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts. Nano Energy 2018, 51, 597-603.
117. Chen, W.-C.; Chen, C.-Y.; Lin, Y.-R.; Chang, J.-K.; Chen, C.-H.; Chiu, Y.-P.; Wu, C.-I.; Chen, K.-H.; Chen, L.-C., Interface engineering of CdS/CZTSSe heterojunctions for enhancing the Cu2ZnSn(S, Se)4 solar cell efficiency. Mater. Today Energy 2019, 13, 256-266.
118. Li, W.; Su, Z.; Tan, J. M. R.; Chiam, S. Y.; Seng, H. L.; Magdassi, S.; Wong, L. H., Revealing the role of potassium treatment in CZTSSe thin film solar cells. Chem. Mater. 2017, 29 (10), 4273-4281.
119. Gurieva, G.; Valle Rios, L. E.; Franz, A.; Whitfield, P.; Schorr, S., Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study. J. Appl. Phys. 2018, 123 (16), 161519.
120. Fairbrother, A.; Dimitrievska, M.; Sánchez, Y.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E., Compositional paradigms in multinary compound systems for photovoltaic applications: a case study of kesterites. J. Mater. Chem. A 2015, 3 (18), 9451-9455.
121. Bosson, C.; Birch, M.; Halliday, D.; Knight, K.; Gibbs, A.; Hatton, P., Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4. J. Mater. Chem. A 2017, 5 (32), 16672-16680.
122. Walsh, A.; Chen, S.; Wei, S. H.; Gong, X. G., Kesterite thin‐film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2012, 2 (4), 400-409.
123. Lafond, A.; Choubrac, L.; Guillot‐Deudon, C.; Deniard, P.; Jobic, S., Crystal structures of photovoltaic chalcogenides, an intricate puzzle to solve: the cases of CIGSe and CZTS materials. Zeitschrift für anorganische und allgemeine Chemie 2012, 638 (15), 2571-2577.
124. Chen, S.; Yang, J.-H.; Gong, X.-G.; Walsh, A.; Wei, S.-H., Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B: Condens. Matter 2010, 81 (24), 245204.
125. Hadke, S.; Chen, W.; Tan, J. M. R.; Guc, M.; Izquierdo-Roca, V.; Rignanese, G.-M.; Hautier, G.; Wong, L. H., Effect of Cd on cation redistribution and order-disorder transition in Cu2(Zn, Cd) SnS4. J. Mater. Chem. A 2019, 7 (47), 26927-26933.
126. Quadir, S.; Qorbani, M.; Lai, Y.-R.; Sabbah, A.; Thong, H. T.; Hayashi, M.; Chen, C. Y.; Chen, K. H.; Chen, L. C., Impact of Cation Substitution in (AgxCu1−x)2ZnSnSe4 Absorber-Based Solar Cells toward 10% Efficiency: Experimental and Theoretical Analyses. Solar RRL 2021, 5 (10), 2100441.
127. Bhattacharya, A.; Tkachuk, D. G.; Mar, A.; Michaelis, V. K., Mere Anarchy is Loosed: Structural Disorder in Cu2Zn1–xCdxSnS4. Chem. Mater. 2021, 33 (12), 4709-4722.
128. McCarthy, C. L.; Brutchey, R. L., Solution Deposited Cu2BaSnS4–x Sex from a Thiol–Amine Solvent Mixture. Chem. Mater. 2018, 30 (2), 304-308.
129. Siebentritt, S., High voltage, please! Nat. Energy 2017, 2 (11), 840-841.
130. Stone, K. H.; Christensen, S. T.; Harvey, S. P.; Teeter, G.; Repins, I. L.; Toney, M. F., Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant x-ray diffraction. Appl. Phys. Lett. 2016, 109 (16), 161901.
131. Többens, D. M.; Gunder, R.; Gurieva, G.; Marquardt, J.; Neldner, K.; Valle-Rios, L. E.; Zander, S.; Schorr, S., Quantitative anomalous powder diffraction analysis of cation disorder in kesterite semiconductors. Powder Diffr. 2016, 31 (3), 168-175.
132. Többens, D. M.; Gurieva, G.; Niedenzu, S.; Schuck, G.; Zizak, I.; Schorr, S., Cation distribution in Cu2ZnSnSe4, Cu2FeSnS4 and Cu2ZnSiSe4 by multiple-edge anomalous diffraction. Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 2020, 76 (6).
133. Zhao, E.; Fang, L.; Chen, M.; Chen, D.; Huang, Q.; Hu, Z.; Yan, Q.-b.; Wu, M.; Xiao, X., New insight into Li/Ni disorder in layered cathode materials for lithium ion batteries: a joint study of neutron diffraction, electrochemical kinetic analysis and first-principles calculations. J. Mater. Chem. A 2017, 5 (4), 1679-1686.
134. Schnepf, R. R.; Cordell, J. J.; Tellekamp, M. B.; Melamed, C. L.; Greenaway, A. L.; Mis, A.; Brennecka, G. L.; Christensen, S.; Tucker, G. J.; Toberer, E. S., Utilizing site disorder in the development of new energy-relevant semiconductors. ACS Energy Lett. 2020, 5 (6), 2027-2041.
135. Ye, K.; Siah, S. C.; Erslev, P. T.; Akey, A.; Settens, C.; Hoque, M. S. B.; Braun, J.; Hopkins, P.; Teeter, G.; Buonassisi, T., Tuning electrical, optical, and thermal properties through cation disorder in Cu2ZnSnS4. Chem. Mater. 2019, 31 (20), 8402-8412.
136. Avdeev, M.; Hester, J. R., ECHIDNA: a decade of high‐resolution neutron powder diffraction at OPAL. J. Appl. Crystallogr. 2018, 51 (6), 1597-1604.
137. Ravel, B.; Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12 (4), 537-541.
138. Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K., Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12 (21), 5503-5513.
139. Esfandiar, A.; Qorbani, M.; Shown, I.; Ojaghi Dogahe, B., A stable and high-energy hybrid supercapacitor using porous Cu2O–Cu1.8S nanowire arrays. J. Mater. Chem. A 2020, 8 (4), 1920-1928.
140. Danilson, M.; Altosaar, M.; Kauk, M.; Katerski, A.; Krustok, J.; Raudoja, J., XPS study of CZTSSe monograin powders. Thin Solid Films 2011, 519 (21), 7407-7411.
141. Lee, P.-Y.; Chang, S.-P.; Hsu, E.-H.; Chang, S.-J., Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation. Sol. Energy Mater. Sol. Cells 2014, 128, 156-165.
142. Buffiere, M.; Brammertz, G.; Sahayaraj, S.; Batuk, M.; Khelifi, S.; Mangin, D.; El Mel, A.-A.; Arzel, L.; Hadermann, J.; Meuris, M., KCN chemical etch for interface engineering in Cu2ZnSnSe4 solar cells. ACS Appl. Mater. Interfaces 2015, 7 (27), 14690-14698.
143. Singh, A.; Geaney, H.; Laffir, F.; Ryan, K. M., Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. JACS 2012, 134 (6), 2910-2913.
144. Grenet, L.; Emieux, F.; Choubrac, L.; Márquez, J. A.; De Vito, E.; Roux, F.; Unold, T., Surface preparation for 10% efficient CZTSe solar cells. Prog. Photovoltaics Res. Appl. 2021, 29 (2), 188-199.
145. Qorbani, M.; Sabbah, A.; Lai, Y.-R.; Kholimatussadiah, S.; Quadir, S.; Huang, C.-Y.; Shown, I.; Huang, Y.-F.; Hayashi, M.; Chen, K.-H., Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst. Nat. Commun. 2022, 13 (1), 1-8.
146. Chantana, J.; Hironiwa, D.; Watanabe, T.; Teraji, S.; Kawamura, K.; Minemoto, T., Investigation of Cu(In, Ga)Se2 absorber by time-resolved photoluminescence for improvement of its photovoltaic performance. Sol. Energy Mater. Sol. Cells 2014, 130, 567-572.
147. Ding, J.; Lian, Z.; Li, Y.; Wang, S.; Yan, Q., The role of surface defects in photoluminescence and decay dynamics of high-quality perovskite MAPbI3 single crystals. J. Phys. Chem. 2018, 9 (15), 4221-4226.
148. Halliday, D.; Claridge, R.; Goodman, M.; Mendis, B.; Durose, K.; Major, J., Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model. J. Appl. Phys. 2013, 113 (22), 223503.
149. Leitao, J.; Santos, N. M.; Fernandes, P.; Salomé, P.; Da Cunha, A.; González, J.; Ribeiro, G.; Matinaga, F., Photoluminescence and electrical study of fluctuating potentials in Cu2ZnSnS4-based thin films. Phys. Rev. B: Condens. Matter 2011, 84 (2), 024120.
150. Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q., In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater. 2018, 10 (7), 563-580.
151. Turnbull, M. J.; Vaccarello, D.; Yiu, Y. M.; Sham, T.-K.; Ding, Z., Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs). J. Chem. Phys. 2016, 145 (20), 204702.
152. Tomson, N. C.; Williams, K. D.; Dai, X.; Sproules, S.; DeBeer, S.; Warren, T. H.; Wieghardt, K., Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions. Chem. Sci. 2015, 6 (4), 2474-2487.
153. Turnbull, M. J.; Khoshmashrab, S.; Wang, Z.; Harbottle, R.; Sham, T.-K.; Ding, Z., Controlling Cu2ZnSnS4 photocatalytic ability through alterations in sulfur availability. Catal. Today 2016, 260, 119-125.
154. Colina-Ruiz, R.; de León, J. M.; Lezama-Pacheco, J.; Caballero-Briones, F.; Acosta-Alejandro, M.; Espinosa-Faller, F., Local atomic structure and analysis of secondary phases in non-stoichiometric Cu2ZnSnS4 using X-ray absorption fine structure spectroscopy. J. Alloys Compd. 2017, 714, 381-389.
155. D’Angelo, P.; Migliorati, V.; Persson, I.; Mancini, G.; Longa, S. D., Quantitative Analysis of Deconvolved X-ray Absorption Near-Edge Structure Spectra: A Tool To Push the Limits of the X-ray Absorption Spectroscopy Technique. Inorg. Chem. 2014, 53 (18), 9778-9784.
156. Ritter, K.; Gurieva, G.; Eckner, S.; Preiß, C.; Ritzer, M.; Hages, C.; Welter, E.; Agrawal, R.; Schorr, S.; Schnohr, C. S., Atomic scale structure of (Ag,Cu)2ZnSnSe4 and Cu2Zn(Sn,Ge)Se4 kesterite thin films. Front. Energy Res. 2021, 9, 125.
157. Huang, W.; Zhu, Y.; Liu, Y.; Liu, L.; Yang, C.; Xu, W., Unveiling the atomic defects and electronic structure of Cu2.2Zn0.8SnSe4− xTex (x= 0 to 0.04) by X-ray absorption fine structure spectroscopy. Phys. Chem. Chem. Phys. 2020, 22 (17), 9362-9367.
158. Gao, F.; Yamazoe, S.; Maeda, T.; Wada, T., Structural Study of Cu-Deficient Cu2 (1-x)ZnSnSe4 Solar Cell Materials by X-ray Diffraction and X-ray Absorption Fine Structure. Jpn. J. Appl. Phys. 2012, 51 (10S), 10NC28.
159. Bai, L.; Hsu, C.-S.; Alexander, D. T.; Chen, H. M.; Hu, X., Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6 (11), 1054-1066.
160. Sears, V. F., Neutron scattering lengths and cross sections. Neutron news 1992, 3 (3), 26-37.
161. Schorr, S., The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 2011, 95 (6), 1482-1488.
162. Hall, S.; Szymanski, J.; Stewart, J., Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals. Can. Mineral. 1978, 16 (2), 131-137.
163. Yin, L.; Mattei, G. S.; Li, Z.; Zheng, J.; Zhao, W.; Omenya, F.; Fang, C.; Li, W.; Li, J.; Xie, Q., Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors. Rev. Sci. Instrum. 2018, 89 (9), 093002.
164. Momma, K.; Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44 (6), 1272-1276.
165. Márquez, J.; Neuschitzer, M.; Dimitrievska, M.; Gunder, R.; Haass, S.; Werner, M.; Romanyuk, Y.; Schorr, S.; Pearsall, N.; Forbes, I., Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells. Sol. Energy Mater. Sol. Cells 2016, 144, 579-585.
166. Lee, Y. S.; Gershon, T.; Gunawan, O.; Todorov, T. K.; Gokmen, T.; Virgus, Y.; Guha, S., Cu2ZnSnSe4 thin‐film solar cells by thermal co‐evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 2015, 5 (7), 1401372.
167. Bosson, C. J.; Birch, M. T.; Halliday, D. P.; Tang, C. C.; Kleppe, A. K.; Hatton, P. D., Polymorphism in Cu2ZnSnS4 and new off-stoichiometric crystal structure types. Chem. Mater. 2017, 29 (22), 9829-9839.
168. Wallace, S. K.; Frost, J. M.; Walsh, A., Atomistic insights into the order–disorder transition in Cu2ZnSnS4 solar cells from Monte Carlo simulations. J. Mater. Chem. A 2019, 7 (1), 312-321.
169. Zheng, Y.-F.; Yang, J.-H.; Gong, X.-G., Cu-Zn disorder in stoichiometric and non-stoichiometric Cu2ZnSnS4/Cu2ZnSnSe4. AIP Adv. 2019, 9 (3), 035248.
指導教授 陳貴賢 林麗瓊 陳賜原(Kuei-Hsien Chen Li-Chyong Chen Szu-yuan Chen) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明