博碩士論文 105282606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.137.187.221
姓名 莫妮卡(Monika Kataria)  查詢紙本館藏   畢業系所 物理學系
論文名稱 混合上轉換奈米粒子與二維材料之物理與應用
(Physics & Applications of Hybrid Upconversion Nanoparticles and Two-Dimensional Materials)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 隨著技術的迅速進步席捲世界,共創美好未來,人類友善的技術方法至關重要。
研究人員一直在適用於醫學、研究、防禦系統、太空技術,以及顯示器等領域的設備
物理和製造領域進行深入研究。其中谷歌眼鏡、電子腕帶、以及醫療設備引領了趨勢
發生了變化。至今,透明、可拉伸且重量極輕的奈米設備取代了傳統的配件,使其舒
適地放置在人體皮膚上,它們可以在較低的工作功率下運作。二維混合系統是研究人
員開發透明且可拉伸的能夠進行光感測器和隨機雷射元件的混合設備的最佳選擇。鑭
系元素摻雜的上轉換奈米粒子表現出反斯托克斯現象,由於這種現象,當被較低能的
光子激發時,它們會發出較高能的光子。鑭系元素由多能態系統組成,該系統為非線
性過程打開了道路,例如:激發態吸收、能量躍遷上轉換過程,以及光子雪崩等。鑭
系元素之4fn 電子結構產生的多能態導致更長的激發時間光生載流子的能態壽命。這為
二維混合系統(例如混合上轉換奈米粒子/石墨烯)中的高靈敏度光電檢測系統領引了
道路。多能態系統還提供了適用於居量反轉之不同亞穩態,從而開闢了利用上轉換奈
米粒子製造雷射器件之新途徑。
設計、製作及研究目的:
1. 整合上轉換奈米粒子及以石墨烯為基底之透明、可穿戴式、寬能帶及高度敏感之光
電探測器。
2. 具有高度敏感、可見盲、可穿戴式及全向之近紅外光電探測器。
3. 具有可拉伸及生物應用的自給自足和高效率之金與上轉換奈米粒子之複合雷射器件。
4. 可用於光學檢測和隨機雷射之阿基米德螺旋波紋微結構。
本論文成功地製造了由上轉換奈米粒子和石墨烯組成的二維混合系統。從包括具有
不同功能的上轉換奈米粒子的可拉伸光電探測器中觀察到了高靈敏度的寬帶和可見盲
窄帶之光電探測器。在連續波長980 奈米雷射光源照射之下,從夾在金奈米顆粒之間
可觀察到超低閾值之隨機雷射現象;當經歷可拉伸的微結構(如波紋結構和阿基米德
螺旋波紋微結構)時,亦觀察到上轉換奈米粒子之隨機雷射現象。這些具有新穎設計
之器件為可拉伸和人類友好型之光電設備領域,提供了正在進行的研究做出了重大貢
獻。
摘要(英) With the rapid technological advancements engulfing the world for better future, human friendly technological approach is all that counts. Researchers have been carrying out intense research in the fields of device physics and fabrications suitable for the fields of medicine, research, defense systems, space technologies, displays, etc. A shift in the trends is observed where google glass, electronic wrist bands, medical accessories, etc. are now overtaken by transparent, stretchable, and extremely light weight nanodevices capable of working under lower operating powers when placed conformably on human skin. Two-dimensional (2D) hybrid systems are the best choice for researchers when it comes to working towards developing transparent and stretchable hybrid devices capable of photodetection and random lasing. Lanthanides doped upconversion nanoparticles exhibit antistokes phenomenon owing to which when excited by lower energy photons, these emit photons of higher energies. The lanthanides comprises of a multi-energy level system that opens way for non-linear processes such as excited state absorption, energy transfer upconversion process, photon avalanche, etc. The multi-energy sublevels from the 4fn electronic configuration of lanthanides results in longer excited state lifetime for photogenerated charge carriers. This paves way for highly sensitive photodetection in 2D hybrid systems (e.g. upconversion nanoparticles/graphene hybrid). The multi-energy level system also provides for different metastable states suitable for the state of population inversion thus opening new ventures for fabricating lasing devices using upconversion nanoparticles. Research aims: 1. To design, fabricate and study transparent, wearable, broadband, and highly sensitive upconversion nanoparticles and graphene-based hybrid photodetectors. 2. To design, fabricate and study highly sensitive, visible blind, wearable, and omnidirectional near-infrared photodetectors.
3. To design, fabricate and study self-sufficient and highly efficient gold sandwich
upconversion nanocomposites lasers for stretchable and bio applications.
4. To design, fabricate and study Archimedean spiral rippled microstructures for
photodetection and random lasing.
The 2D hybrid systems comprising of upconversion nanoparticles and graphene were
successfully fabricated. Highly sensitive broadband and visible-blind narrow band
photodetection was observed from stretchable photodetectors comprising of upconversion
nanoparticles with different functionalities. Ultra-low thresholds random lasing action was
observed from upconversion nanoparticles sandwiched between gold nanoparticles upon
continuous wave 980 nm laser pumping. Random lasing actions were also observed from
upconversion nanoparticles when subjected to stretchable microstructures such as rippled
structures and the Archimedean spiral rippled microstructures. These devices with novel
designs make a significant contribution to the ongoing research in the field of stretchable and
human friendly optoelectronic devices.
關鍵字(中) ★ 上轉換奈米粒子
★ 二維材料
★ 柔性電子
★ 光電探測器
★ 隨機雷射
★ 亞穩態
關鍵字(英) ★ upconversion nanoparticles
★ two-dimensional materials
★ flexible electronics
★ photodetectors
★ random lasing
★ metastable states
論文目次 1 Introduction………………………………………………………………………………1
1.1 Flexible Electronics and its Present Trends………………………………………….1
1.2 Flexible Substrates…………………………………………………………………...4
1.3 Graphene – A Conducting 2D Flexible Film………………………………………...5
1.4 Upconversion Nanoparticles…………………………………………………………7
1.5 Flexible Photodetectors……………………………………………………………..10
1.6 Random Lasers……………………………………………………………………...11
1.7 Motivation………………………………………………………………………......11
1.8 References…………………………………………………………………………..12
2 Experimental Techniques………………………………………………………………16
2.1 Chemical Vapour Deposition (CVD) Technique for Graphene Growth……………16
2.2 Graphene Transfer Method on Different Substrates………………………………...30
2.3 Thermal Evaporation Deposition Technique………………………………………..38
2.4 Polydimethylsiloxane (PDMS) Film Synthesis……………………………………..39
2.5 Spin Coating Technique…………………………………………………………….40
2.6 Transmission Electron Microscopy (TEM)…………………………………………41
2.7 Scanning Electron Microscopy (SEM)……………………………………………...42
2.8 Raman Spectroscopy………………………………………………………………...43
2.9 Photoluminescence Spectroscopy…………………………………………………...44
2.10 Current-voltage characteristics measurement setup……………………………......46
2.11 References………………………………………………………………………….48
3 Wearable & Broadband Hybrid Photodetectors……………………………………...50
3.1 Introduction……………………………………………………………………….....50
3.2 Results and Discussions………………………………………………………….….52
3.3 Experimental Methods………………………………………………………….…...76
3.3.1 Device Fabrication……………………………………………………….…...76
3.3.2 Synthesis of upconversion nanoparticles (UCNPs)…………………….…….80
3.3.3 Single Layer Graphene Synthesis………………………………………….....81
3.3.4 Electrode deposition……………………………………………………….…82
3.3.5 Electrical and Optical Measurements…………………………………………83
3.3.6 PDMS Synthesis……………………………………………………………....83
3.3.7 Instrumentation detail of TEM………………………………………………..83
3.4 Conclusions……………………………………………………………………….....84
3.5 References………………………………………………………………………..….84
4 Visible Blind and Wearable Near Infrared Photodetectors……………………..…...90
4.1 Introduction……………………………………………………………………..…...90
4.2 Results and Discussion………………………………………………………..……..94
4.3 Experimental Methods……………………………………………………….….....126
4.3.1 Device Fabrication…………………………………………………….…….126
4.3.2 Synthesis of Upconversion Nanoparticles…………………………………..127
4.3.3 Single Layer Graphene Synthesis……………………………………...……129
4.3.4 Electrode Deposition………………………………………………………...129
4.3.5 Electrical and Optical Measurements………………………………………..130
4.3.6 PDMS Synthesis……………………………………………………………..130
4.3.7 Instrumentation Detail of TEM………………………………………...……130
4.4 Conclusions………………………………………………………………………...130
4.5 References………………………………………………………………………….131
5 Gold Sandwich Upconversion Nanocomposites Lasers………………………...…...138
5.1 Introduction………………………………………………………………………...138
5.2 Results and Discussion…………………………………………………………..…142
5.2.1 Design and fabrication of Au1-UCNP-Au2 nanocomposites based lasing
device……………………………………………………………………………...142
5.2.2 Upconversion lasing from Au1-UCNP-Au2 nanocomposites based lasing
device………………………………………………………………………….......151
5.2.3 Role of localised surface plasmons resonance (LSPR) and electromagnetic
hotspots……………………………………………………………………...…….158
5.2.4 Mechanism for lasing action from Au1-UCNP-Au2 nanocomposites based
lasing device……………………………………………………………………….162
5.2.5 Design and fabrication of stretchable lasing device…………………………165
5.2.6 Demonstration of ultra-low threshold lasing action from stretchable random
lasing device……………………………………………………………………….167
5.2.7 Au1-UCNP-Au2 nanocomposites for bioimaging application……………….172
5.2.8 Antibacterial properties and photothermal therapy mechanism of Au1-UCNPAu2
nanocomposites……………………………………………………………….173
5.3 Experimental Methods……………………………………………………………..178
5.3.1 Synthesis of Au1-UCNP-Au2 nanocomposites………………………………178
5.3.2 Structural and Optical Characterizations……………………………………181
5.3.3 Fluorescence Carrier Life time Measurements……………………………...182
5.3.4 Numerical simulation………………………………………………………..182
5.3.5 Reduced graphene oxide flakes synthesis…………………………………...183
5.3.6 Bioimaging of HeLa cells…………………………………………………...183
5.3.7 Antibacterial treatment (materials and methods)……………………………183
5.4 Conclusion………………………………………………………………………….185
5.5 References………………………………………………………………………….187
6 Archimedean Spiral Rippled Microstructures for Photodetection and Random
Lasing………………………………………………………………………………….192
6.1 Introduction………………………………………………………………………...192
6.2 Results and Discussion……………………………………………………………..197
6.2.1 Device design, fabrication, and characterizations of its constituents………..197
6.2.2 Device performance of an Archimedean spiral rippled graphene microstructure
based photodetector………………………………………………………………..211
6.2.3 Ultra-high sensitivity mechanism for Archimedean spiral rippled graphene
microstructure based photodetector……………………………………………….217
6.2.4 Flexibility of the Archimedean spiral rippled microstructure based
photodetector………………………………………………………………………224
6.2.5 Archimedean spiral rippled microstructure based random lasing device...…227
6.2.6 Random lasing mechanism and flexibility of the Archimedean spiral rippled
microstructure based random lasing device……………………………………….233
6.3 Experimental Methods……………………………………………………………..237
6.3.1 Device fabrication…………………………………………………………...237
6.3.2 Upconversion nanoparticles (UCNP) synthesis……………………………..237
6.3.3 Graphene growth and its transfer on substrates……………………………..239
6.3.4 PDMS film synthesis………………………………………………………..240
6.3.5 Silver electrodes deposition…………………………………………………240
6.3.6 Numerical Simulation……………………………………………………….241
6.3.7 rGO flakes synthesis………………………………………………………...241
6.3.8. Electrical, optical and microscopy measurements………………………….241
6.4 Conclusions………………………………………………………………………...241
6.5 References …………………………………………………………………………243
7 Conclusion and Future Works………………………………………………………249
Appendix A………………………………………………………………………………...254
Appendix B………………………………………………………………………………...256
Appendix C………………………………………………………………………………...257
參考文獻 1.8 References
(1) Myny, K. The development of flexible integrated circuits based on thin-film transistors.
Nat. Electron. 2018, 1, 30-39.
(2) Ray, K. A. Flexible solar cell arrays for increased space power. IEEE Aero El. Sys.
Mag. 1967, 107-115.
(3) Wei, S.; Wang, F.; Zou, X.; Wang, L.; Liu, C.; Liu, X.; Hu, W.; Fan, Z.; Ho, J. C.; Liao,
L. Flexible Quasi‐2D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband
Photodetection. Adv. Mater. 2020, 32, 1907527.
(4) Gustafsson, G.; Treacy, G.; Cao, Y.; Klavetter, F.; Colaneri, N.; Heeger, A. The
“plastic” led: A flexible light-emitting device using a polyaniline transparent electrode. Synth.
Met. 1993, 57, 4123-4127.
(5) Liu, X.; Li, T.; Yi, T.; Wang, C.; Li, J.; Xu, M.; Huang, D.; Liu, S.; Jiang, S.; Ding, Y.
Random laser action from a natural flexible biomembrane-based device. J. Mod. Opt. 2016,
63, 1248-1253.
13
(6) Dong, L.; Xu, C.; Li, Y.; Huang, Z.-H.; Kang, F.; Yang, Q.-H.; Zhao, X. Flexible
electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater.
Chem. A 2016, 4, 4659-4685.
(7) Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future
prospects. Energy Environ. Sci. 2014, 7, 1307-1338.
(8) Adler, C.; Klink, G.; Feil, M.; Ansorge, F.; Reichl, H. In Assembly of ultra thin and
flexible ICs, 4th International Conference on Adhesive Joining and Coating Technology in
Electronics Manufacturing. Proceedings. Presented at Adhesives in Electronics 2000 (Cat. No.
00EX431), IEEE: 2000; 20-23.
(9) Kim, M.; Kang, P.; Leem, J.; Nam, S. A stretchable crumpled graphene photodetector
with plasmonically enhanced photoresponsivity. Nanoscale 2017, 9, 4058-4065.
(10) Lee, S.-K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho,
J. H.; Ahn, J.-H. Stretchable graphene transistors with printed dielectrics and gate electrodes.
Nano Lett. 2011, 11, 4642-4646.
(11) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.;
Chang, H.-T.; Chen, Y.-F. Highly stretchable and sensitive photodetectors based on hybrid
graphene and graphene quantum dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(12) Plichta, A.; Habeck, A.; Knoche, S.; Kruse, A.; Weber, A.; Hildebrand, N. Flexible
glass substrates. Flexible Flat Panel Displays 2005, 3, 35.
(13) Altenberend, U.; Molina-Lopez, F.; Oprea, A.; Briand, D.; Bârsan, N.; De Rooij, N. F.;
Weimar, U. Towards fully printed capacitive gas sensors on flexible PET substrates based on
Ag interdigitated transducers with increased stability. Sensor Actuat. B-Chem. 2013, 187, 280-
287.
14
(14) Wu, C.; Theiuss, S.; Gu, G.; Lu, M.; Sturm, J. C.; Wagner, S.; Forrest, S. Integration of
organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates. IEEE
Electron Device Lett. 1997, 18, 609-612.
(15) Dai, S.; Zhu, Y.; Gu, Y.; Du, Z. Biomimetic fabrication and photoelectric properties of
superhydrophobic ZnO nanostructures on flexible PDMS substrates replicated from rose petal.
Appl Phys A-Mater 2019, 125, 138.
(16) Trung, T. Q.; Dang, V. Q.; Lee, H.-B.; Kim, D.-I.; Moon, S.; Lee, N.-E.; Lee, H. An
Omnidirectionally Stretchable Photodetector Based on Organic–Inorganic Heterojunctions.
ACS Appl. Mater. Interfaces 2017, 9, 35958-35967.
(17) Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of Graphene and Its
Applications: A Review. CRIT REV SOLID STATE 2010, 35, 52-71.
(18) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer,
F. P. G.; Gatti, F.; Koppens, F. H. Hybrid graphene–quantum dot phototransistors with
ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
(19) Wang, C.; Liu, Y.; Lan, L.; Tan, H. Graphene wrinkling: formation, evolution and
collapse. Nanoscale 2013, 5, 4454-4461.
(20) Chen, C.; Li, C.; Shi, Z. Current Advances in Lanthanide‐Doped Upconversion
Nanostructures for Detection and Bioapplication. Adv. Sci. 2016, 3, 1600029.
(21) Das, A.; Mao, C.; Cho, S.; Kim, K.; Park, W. Over 1000-fold enhancement of
upconversion luminescence using water-dispersible metal-insulator-metal nanostructures. Nat.
Commun. 2018, 9, 1-11.
(22) Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359-
367.
15
(23) Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A. J.;
Hashimotodani, Y.; Kano, M.; Iwasaki, H. Near-infrared deep brain stimulation via
upconversion nanoparticle–mediated optogenetics. Science 2018, 359, 679-684.
(24) Gulzar, A.; Xu, J.; Yang, D.; Xu, L.; He, F.; Gai, S.; Yang, P. Nano-graphene oxide-
UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and
PTT/PDT combinatorial therapy. Dalton Trans. 2018, 47, 3931-3939.
(25) Rabie, H.; Zhang, Y.; Pasquale, N.; Lagos, M. J.; Batson, P. E.; Lee, K. B. NIR
Biosensing of Neurotransmitters in Stem Cell‐Derived Neural Interface Using Advanced Core–
Shell Upconversion Nanoparticles. Adv. Mater. 2019, 31, 1806991.
(26) Gao, L.; Shan, X.; Xu, X.; Liu, Y.; Liu, B.; Li, S.; Wen, S.; Ma, C.; Jin, D.; Wang, F.
Video-rate upconverting display by optimizing lanthanide ions doped upconversion
nanoparticles. Nanoscale 2020.
(27) Ma, D.; Shen, Y.; Su, T.; Zhao, J.; Rahman, N. U.; Xie, Z.; Shi, F.; Zheng, S.; Zhang,
Y.; Chi, Z. Performance enhancement in up-conversion nanoparticle-embedded perovskite
solar cells by harvesting near-infrared sunlight. Mater. Chem. Front. 2019, 3, 2058-2065.

2.11 References

(1) Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of
graphene. J. Mater. Chem. A 2015, 3, 11700-11715.
(2) Saleem, H.; Haneef, M.; Abbasi, H. Y. Synthesis route of reduced graphene oxide via
thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1-
7.
(3) Muñoz, R.; Gómez‐Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap.
Depos. 2013, 19, 297-322.
(4) Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.;
Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary
substrates. ACS Nano 2011, 5, 6916-6924.
(5) Kataria, M.; Yadav, K.; Haider, G.; Liao, Y. M.; Liou, Y.-R.; Cai, S.-Y.; Lin, H.-i.;
Chen, Y. H.; Paul Inbaraj, C. R.; Bera, K. P. Transparent, wearable, broadband, and highly
sensitive upconversion nanoparticles and graphene-based hybrid photodetectors. ACS
Photonics 2018, 5, 2336-2347.
(6) Porqueras, I.; Bertran, E. Electrochromic behaviour of nickel oxide thin films deposited
by thermal evaporation. Thin Solid Films 2001, 398, 41-44.
49
(7) Harris, K.; Elias, A.; Chung, H.-J. Flexible electronics under strain: a review of
mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51,
2771-2805.
(8) Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.;
Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Ultra-high mobility transparent organic thin
film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5, 1-9.
(9) Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E.
S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. Engineering bright sub-10-nm
upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300.
(10) Lloyd, G. E. Atomic number and crystallographic contrast images with the SEM: a
review of backscattered electron techniques. Mineral. Mag. 1987, 51, 3-19.
(11) Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec,
S.; Jiang, D.; Novoselov, K.; Roth, S. Raman spectrum of graphene and graphene layers. Phys.
Rev. Lett. 2006, 97, 187401.
(12) Wu, S.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.;
Schuck, P. J. Non-blinking and photostable upconverted luminescence from single lanthanidedoped
nanocrystals. Proc. Natl. Acad. Sci. 2009, 106, 10917-10921.

3.5 References
(1) Liu, Y.; Pharr, M.; Salvatore, G. A. Lab-on-Skin: A Review of Flexible and Stretchable
Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614-9635.
85
(2) Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M.
Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems.
Nat. Nanotechnol. 2014, 9, 780-793.
(3) Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H.
High‐Performance Perovskite–Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41-46.
(4) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer,
F. P. G.; Gatti, F.; Koppens, F. H. Hybrid Graphene-Quantum Dot Phototransistors with
Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368.
(5) Zhou, C.; Wang, X.; Kuang, X.; Xu, S. High Performance Flexible Ultraviolet
Photodetectors Based on TiO2/Graphene Hybrid for Irradiation Monitoring Applications. J.
Micromech. Microeng. 2016, 26, 75003-75011.
(6) Hu, C.; Dong, D.; Yang, X.; Qiao, K.; Yang, D.; Deng, H.; Yuan, S.; Khan, J.; Lan, Y.;
Song, H. Synergistic Effect of Hybrid PbS Quantum Dots/2D‐WSe2 Toward High Performance
and Broadband Phototransistors. Adv. Funct. Mater. 2017, 27, 1603605
(7) Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y. Solution-
Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5,
5404.
(8) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183-191.
(9) Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: a Review of Graphene.
Chem. Rev. 2009, 110, 132-145.
(10) Wang, H. X.; Wang, Q.; Zhou, K. G.; Zhang, H. L. Graphene in Light: Design,
Synthesis and Applications of Photo‐active Graphene and Graphene‐Like Materials. Small
2013, 9, 1266-1283.
86
(11) Manga, K. K.; Zhou, Y.; Yan, Y.; Loh, K. P. Multilayer Hybrid Films Consisting of
Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and
Photoconversion Properties. Adv. Funct. Mater. 2009, 19, 3638-3643.
(12) Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling Upconversion Nanocrystals for Emerging
Applications. Nat. Nanotechnol. 2015, 10, 924-936.
(13) Haase, M.; Schäfer, H. Upconverting Nanoparticles. Angew. Chem. Int. Ed. 2011, 50,
5808-5829.
(14) Wang, F.; Liu, X. Recent Advances in the Chemistry of Lanthanide-Doped
Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
(15) Yadav, K.; Chou, A.-C.; Ulaganathan, R. K.; Gao, H.-D.; Lee, H.-M.; Pan, C.-Y.; Chen,
Y.-T. Targeted and Efficient Activation of Channelrhodopsins Expressed in Living Cells via
Specifically-Bound Upconversion Nanoparticles. Nanoscale 2017, 9, 9457-9466.
(16) Liu, Q.; Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. Sub-10 nm Hexagonal Lanthanide-
Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. J. Am. Chem.
Soc 2011, 133, 17122-17125.
(17) Guo, H.; Idris, N. M.; Zhang, Y. LRET-Based Biodetection of DNA Release in Live
Cells Using Surface-Modified Upconverting Fluorescent Nanoparticles. Langmuir 2011, 27,
2854-2860.
(18) Sivakumar, S.; van Veggel, F. C. M.; Raudsepp, M. Bright White Light Through Upconversion
of a Single NIR Source from Sol− Gel-Derived Thin Film Made with Ln3+-Doped
LaF3 Nanoparticles. J. Am. Chem. Soc 2005, 127, 12464-12465.
(19) Wang, J.; Ming, T.; Jin, Z.; Wang, J.; Sun, L.-D.; Yan, C.-H. Photon Energy
Upconversion Through Thermal Radiation with the Power Efficiency Reaching 16%. Nat.
Commun. 2014, 5, 5669.
87
(20) Zhou, N.; Xu, B.; Gan, L.; Zhang, J.; Han, J.; Zhai, T. Narrowband Spectrally Selective
Near-Infrared Photodetector Based on Up-conversion Nanoparticles Used in a 2D Hybrid
Device. J. Mater. Chem. C 2017, 5, 1591-1595.
(21) Niu, W.; Chen, H.; Chen, R.; Huang, J.; Palaniappan, A.; Sun, H.; Liedberg, B. G.; Tok,
A. I. Y. Synergetically Enhanced Near‐Infrared Photoresponse of Reduced Graphene Oxide by
Upconversion and Gold Plasmon. Small 2014, 10, 3637-3643.
(22) Li, J.; Shen, Y.; Liu, Y.; Shi, F.; Ren, X.; Niu, T.; Zhao, K.; Liu, S. Stable High
Performance Flexible Photodetector Based on Upconversion Nanoparticles/Perovskite
Microarrays Composite. ACS Appl. Mater. Interfaces 2017, 9, 19176–19183.
(23) Lee, S.-K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho,
J. H.; Ahn, J.-H. Stretchable Graphene Transistors with Printed Dielectrics and Gate
Electrodes. Nano Lett. 2011, 11, 4642-4646.
(24) Kim, M.; Kang, P.; Leem, J.; Nam, S. A Stretchable Crumpled Graphene Photodetector
with Plasmonically Enhanced Photoresponsivity. Nanoscale 2017, 9, 4058-4065.
(25) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.;
Chang, H.-T.; Chen, Y.-F. Highly Stretchable and Sensitive Photodetectors Based on Hybrid
Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(26) Pandey, A.; Rai, V. K.; Kumar, V.; Kumar, V.; Swart, H. Upconversion Based
Temperature Sensing Ability of Er 3+–Yb 3+ Codoped SrWO 4: an Optical Heating Phosphor.
Sens. Actuator B-Chem. 2015, 209, 352-358.
(27) Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec,
S.; Jiang, D.; Novoselov, K.; Roth, S. Raman Spectrum of Graphene and Graphene Layers.
Phys. Rev. Lett. 2006, 97, 187401.
88
(28) Leites, L.; Bukalov, S.; Yadritzeva, T.; Mokhov, M.; Antipova, B.; Frunze, T.;
Dement′ev, V. Vibrational and Electronic Spectra and the Structure of Crystalline Poly
(dimethylsilane). Macromolecules 1992, 25, 2991-2993.
(29) Warner, J.; Polkinghorne, J.; Gonerka, J.; Meyer, S.; Luo, B.; Frethem, C.; Haugstad,
G. Strain-Induced Crack Formations in PDMS/DXA Drug Collars. Acta Biomater. 2013, 9,
7335-7342.
(30) Hwang, E.; Adam, S.; Sarma, S. D. Carrier Transport in Two-Dimensional Graphene
Layers. Phys. Rev. Lett. 2007, 98, 186806.
(31) Wen, H.; Zhu, H.; Chen, X.; Hung, T. F.; Wang, B.; Zhu, G.; Yu, S. F.; Wang, F.
Upconverting Near‐Infrared Light through Energy Management in Core–Shell–Shell
Nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 13419-13423.
(32) Zhao, F.; Yin, D.; Wu, C.; Liu, B.; Chen, T.; Guo, M.; Huang, K.; Chen, Z.; Zhang, Y.
Huge Enhancement of Upconversion Luminescence by Dye/Nd 3+ Sensitization of Quenching-
Shield Sandwich Structured Upconversion Nanocrystals under 808 nm Excitation. Dalton
Trans. 2017, 46, 16180-16189.
(33) Lu, M.-L.; Lai, C.-W.; Pan, H.-J.; Chen, C.-T.; Chou, P.-T.; Chen, Y.-F. A Facile
Integration of Zero-(I–III–VI Quantum dots) and One-(Single SnO2 Nanowire) Dimensional
Nanomaterials: Fabrication of a Nanocomposite Photodetector with Ultrahigh Gain and Wide
Spectral Response. Nano Lett. 2013, 13, 1920-1927.
(34) Cheng, S. H.; Weng, T. M.; Lu, M. L.; Tan, W. C.; Chen, J. Y.; Chen, Y. F. All Carbon-
Based Photodetectors: an Eminent Integration of Graphite Quantum Dots and Two
Dimensional Graphene. Sci. Rep. 2013, 3, 2694.
(35) Lu, M.-L.; Weng, T.-M.; Chen, J.-Y.; Chen, Y.-F. Ultrahigh-Gain Single SnO2
Nanowire Photodetectors Made with Ferromagnetic Nickel Electrodes. NPG Asia Mater. 2012,
4, e26.
89
(36) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C.
T.; Shih, W. H.; Chen, Y. F. Electrical‐Polarization‐Induced Ultrahigh Responsivity
Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26,
620-628.
(37) Obraztsov, A. N. Chemical Vapour Deposition: Making Graphene on a Large Scale.
Nat. Nanotechnol. 2009, 4, 212-213.
(38) Xie, X.; Gao, N.; Deng, R.; Sun, Q.; Xu, Q.;Liu, X. Mechanistic Investigation of Photon
Upconversion in Nd3+ Sensitized Core-Shell Nanoparticles. J. Am. Chem. Soc. 2013, 135,
12608-12611.
(39) Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.;
Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary
Substrates. ACS Nano 2011, 5, 6916-6924.

4.5 References
(1) Armstrong, A. M.; Klein, B.; Allerman, A. A.; Douglas, E. A.; Baca, A. G.;
Crawford, M. H.; Pickrell, G. W.; Sanchez, C. A. Visible-Blind and Solar-Blind
Detection Induced by Defects in AlGaN High Electron Mobility Transistors. J. Appl.
Phys. 2018, 123, 114502.
(2) Hou, J.; Wang, Z.; Ding, Z.; Zhang, Z.; Zhang, J. Facile Synthesize VO 2 (M1)
Nanorods for a Low-Cost Infrared Photodetector Application. Sol. Energy Mater Sol.
Cells 2018, 176, 142-149.
132
(3) Ma, D.-L.; Wu, C.; Tang, W.; Gupta, A.-R.; Lee, F.-W.; Li, G.; Leung, C.-H. Recent
Advances in Iridium (III) Complex-Assisted Nanomaterials for Biological
Applications. J. Mater. Chem. B 2018, 6, 537-544.
(4) Ycas, G.; Giorgetta, F. R.; Baumann, E.; Coddington, I.; Herman, D.; Diddams, S. A.;
Newbury, N. R. High-Coherence Mid-Infrared Dual-Comb Spectroscopy Spanning
2.6 to 5.2 μm. Nat. Photonics 2018, 12, 202.
(5) Liu, Y.; Sun, T.; Ma, W.; Yu, W.; Nanjunda, S. B.; Li, S.; Bao, Q. Highly Responsive
Broadband Black Phosphorus Photodetectors. Chin. Opt. Lett. 2018, 16, 020002.
(6) Colace, L.; Assanto, G.; Fulgoni, D.; Nash, L. Near-Infrared Pin Ge-on-Si
Photodiodes for Silicon Integrated Receivers. J. Light. Technol. 2008, 26, 2954-2959.
(7) Hopkinson, M.; Martin, T.; Smowton, P. III–V Semiconductor Devices Integrated
with Silicon. Semicond. Sci. Technol. 2013, 28, 090301.
(8) De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S. PbS Colloidal
Quantum Dot Visible-Blind Photodetector for Early Indoor Fire Detection. IEEE
Sens. J. 2017, 17, 4454-4459.
(9) Colace, L.; Assanto, G. Germanium on Silicon for Near-Infrared Light Sensing. IEEE
Photon. J. 2009, 1, 69-79.
(10) De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S. PbS Colloidal
Quantum Dot Photodetectors Operating in the Near Infrared. Sci. Rep. 2016, 6, 37913.
(11) Shen, L.; Zhang, Y.; Bai, Y.; Zheng, X.; Wang, Q.; Huang, J. A Filterless, Visible-
Blind, Narrow-Band, and Near-Infrared Photodetector with a Gain. Nanoscale 2016,
8, 12990-12997.
(12) Kataria, M.; Yadav, K.; Haider, G.; Liao, Y. M.; Liou, Y.-R.; Cai, S.-Y.; Lin, H.-i.;
Chen, Y. H.; Paul Inbaraj, C. R.; Bera, K. P. Transparent, Wearable, Broadband, and
133
Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid
Photodetectors. ACS Photonics 2018, 5, 2336-2347.
(13) Li, J.; Shen, Y.; Liu, Y.; Shi, F.; Ren, X.; Niu, T.; Zhao, K.; Liu, S. F. Stable High-
Performance Flexible Photodetector Based on Upconversion Nanoparticles/Perovskite
Microarrays Composite. ACS Appl. Mater. Interfaces 2017, 9, 19176-19183.
(14) Zhou, N.; Xu, B.; Gan, L.; Zhang, J.; Han, J.; Zhai, T. Narrowband Spectrally
Selective Near-Infrared Photodetector Based on Up-Conversion Nanoparticles Used
in a 2D Hybrid Device. J. Mater. Chem. C 2017, 5, 1591-1595.
(15) Niu, W.; Chen, H.; Chen, R.; Huang, J.; Palaniappan, A.; Sun, H.; Liedberg, B. G.;
Tok, A. I. Y. Synergetically Enhanced Near‐Infrared Photoresponse of Reduced
Graphene Oxide by Upconversion and Gold Plasmon. Small 2014, 10, 3637-3643.
(16) Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem.
Rev. 2004, 104, 139-174.
(17) Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum
Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell
Upconverting Nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922-4928.
(18) Auzel, F. Upconversion Processes in Coupled Ion Systems. J. Lumin. 1990, 45, 341-
345.
(19) Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling Upconversion Nanocrystals for
Emerging Applications. Nat. Nanotechnol. 2015, 10, 924.
(20) Han, S.; Deng, R.; Xie, X.; Liu, X. Enhancing Luminescence in Lanthanide‐Doped
Upconversion Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11702-11715.
(21) Zhang, Y.; Yao, L.; Xu, D.; Lin, H.; Yang, S. Controlled Synthesis and Luminescence
Properties of β-NaGdF4: Yb3+, Er3+ Upconversion Nanoparticles. J. Cryst. Growth
2018, 491, 116-119.
134
(22) Mondal, M.; Rai, V. K. Ho3+-Yb3+: YMoO4 Core@ Shell Nanoparticles for Enhanced
Visible Upconversion and Security Applications. J Alloys Compd. 2018, 750, 304-
311.
(23) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer,
F. P. G.; Gatti, F.; Koppens, F. H. Hybrid Graphene–Quantum Dot Phototransistors
with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363.
(24) Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene.
Chem. Rev. 2009, 110, 132-145.
(25) Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M.
Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid
Systems. Nat. Nanotechnol. 2014, 9, 780.
(26) Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y.; Yu, K. J.; Cheng, H.; Shi, M.;
Bian, Z.; Liu, Z.; Kim, Y.-S. Ultrathin Conformal Devices for Precise and Continuous
Thermal Characterization of Human Skin. Nat. Mater. 2013, 12, 938.
(27) Dong, Y.; Zou, Y.; Song, J.; Zhu, Z.; Li, J.; Zeng, H. Self-Powered Fiber-Shaped
Wearable Omnidirectional Photodetectors. NANO ENERGY. 2016, 30, 173-179.
(28) Lim, S.; Um, D.-S.; Ha, M.; Zhang, Q.; Lee, Y.; Lin, Y.; Fan, Z.; Ko, H. Broadband
Omnidirectional Light Detection in Flexible and Hierarchical ZnO/Si Heterojunction
Photodiodes. Nano Res. 2017, 10, 22-36.
(29) Tsai, M.-L.; Tsai, D.-S.; Tang, L.; Chen, L.-J.; Lau, S. P.; He, J.-H. Omnidirectional
Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon
Hybrid Device. ACS Nano 2017, 11, 4564-4570.
(30) Kobwittaya, K.; Oishi, Y.; Torikai, T.; Yada, M.; Watari, T.; Luitel, H. N. Nearly
Pure NIR to NIR Upconversion Luminescence in Tm3+, Yb3+ Co-doped ZnO-TiO2
Composite Phosphor Powder. Vacuum 2018, 148, 286-295.
135
(31) Choi, J.; Kim, H. J.; Wang, M. C.; Leem, J.; King, W. P.; Nam, S. Three-Dimensional
Integration of Graphene via Swelling, Shrinking, and Adaptation. Nano Lett. 2015,
15, 4525-4531.
(32) Fan, X.; Khosravi, F.; Rahneshin, V.; Shanmugam, M.; Loeian, M.; Jasinski, J.; Cohn,
R. W.; Terentjev, E.; Panchapakesan, B. MoS2 Actuators: Reversible Mechanical
Responses of MoS2-Polymer Nanocomposites to Photons. Nanotechnology 2015, 26,
261001.
(33) Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec,
S.; Jiang, D.; Novoselov, K.; Roth, S. Raman Spectrum of Graphene and Graphene
Layers. Phys. Rev. Lett. 2006, 97, 187401.
(34) Yadav, K.; Chou, A.-C.; Ulaganathan, R. K.; Gao, H.-D.; Lee, H.-M.; Pan, C.-Y.;
Chen, Y.-T. Targeted and Efficient Activation of Channelrhodopsins Expressed in
Living Cells via Specifically-Bound Upconversion Nanoparticles. Nanoscale 2017, 9,
9457-9466.
(35) Yi, J.; Zhao, Z.-Y.; Wang, Y.-A. Systematic Studies on Yb x Bi 1− x VO 4: Tm 3+ Solid
Solutions: Experiments and DFT Calculations on Up-Conversion Photoluminescence
Properties. RSC Adv. 2018, 8, 596-605.
(36) Cheng, S.-H.; Weng, T.-M.; Lu, M.-L.; Tan, W.-C.; Chen, J.-Y.; Chen, Y.-F. All
Carbon-Based Photodetectors: An Eminent Integration of Graphite Quantum Dots and
Two Dimensional Graphene. Sci. Rep. 2013, 3, 2694.
(37) Diaz-Torres, L.; De la Rosa, E.; Salas, P.; Desirena, H. Enhanced Cooperative
Absorption and Upconversion in Yb3+ Doped YAG Nanophosphors. Opt. Mater.
2005, 27, 1305-1310.
136
(38) Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C.-L.;
Nilsson, B.; Heeger, A. J. High-Detectivity Polymer Photodetectors with Spectral
Response from 300 nm to 1450 nm. Science 2009, 325, 1665-1667.
(39) Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R. Intense Ultraviolet
Upconversion Luminescence from Hexagonal NaYF 4: Yb 3+/Tm 3+ Microcrystals.
Opt. Express 2008, 16, 11907-11914.
(40) Luu, Q.; Hor, A.; Fisher, J.; Anderson, R. B.; Liu, S.; Luk, T.-S.; Paudel, H. P.;
Farrokh Baroughi, M.; May, P. S.; Smith, S. Two-Color Surface Plasmon Polariton
Enhanced Upconversion in NaYF4: Yb: Tm Nanoparticles on Au Nanopillar Arrays.
J. Phys. Chem. C 2014, 118, 3251-3257.
(41) Yang, W.; Li, X.; Chi, D.; Zhang, H.; Liu, X. Lanthanide-Doped Upconversion
Materials: Emerging Applications for Photovoltaics and Photocatalysis.
Nanotechnology 2014, 25, 482001.
(42) Ghahramani, E.; Moss, D.; Sipe, J. Second-Harmonic Generation in Odd-Period,
Strained,(Si) n (Ge) n/Si Superlattices and at Si/Ge Interfaces. Phys. Rev. Lett. 1990,
64, 2815.
(43) Shi, F.; Wang, J.; Zhang, D.; Qin, G.; Qin, W. Greatly Enhanced Size-Tunable
Ultraviolet Upconversion Luminescence of Monodisperse β-NaYF 4: Yb, Tm
Nanocrystals. J. Mater. Chem. 2011, 21, 13413-13421.
(44) Leenaerts, O.; Partoens, B.; Peeters, F.; Volodin, A.; Van Haesendonck, C. The Work
Function of Few-Layer Graphene. J. Phys. Condens. Matter. 2016, 29, 035003.
(45) Ionization Potentials of Atoms and Atomic Ions- Handbook of Chemistry and
Physics; Lide, D. R.; CRC Press: Florida, 1992; pp 10-211.
137
(46) Shakeri, M.; Rezvani, M. Optical Band Gap and Spectroscopic Study of Lithium
Alumino Silicate Glass Containing Y3+ Ions. Spectrochim. Acta A 2011, 79, 1920-
1925.

5.5 References
(1) Tian, G.; Zhang, X.; Gu, Z.; Zhao, Y. Recent Advances in Upconversion
Nanoparticles‐Based Multifunctional Nanocomposites for Combined Cancer
Therapy. Adv. Mater. 2015, 27, 7692-7712.
(2) Haase, M.; Schäfer, H. Upconverting Nanoparticles. Angew. Chem. Int. Ed. 2011, 50,
5808-5829.
(3) Auzel, F. Upconversion and anti-Stokes Processes with f and d Ions in Solids. Chem.
Rev. 2004, 104, 139-174.
(4) Wang, F.; Liu, X. Recent Advances in the Chemistry of Lanthanide-Doped
Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
(5) Zhang, C.; Yang, L.; Zhao, J.; Liu, B.; Han, M. Y.; Zhang, Z. White‐Light Emission
from an Integrated Upconversion Nanostructure: Toward Multicolor Displays
Modulated by Laser Power. Angew. Chem. Int. Ed. 2015, 54, 11531-11535.
(6) Maciel, G.; Biswas, A.; Kapoor, R.; Prasad, P. Blue Cooperative Upconversion in
Yb3+-Doped Multicomponent Sol-Gel-Processed Silica Glass for Three-Dimensional
Display. Appl. Phys. Lett. 2000, 76, 1978-1980.
(7) Liu, X.; Yan, C.-H.; Capobianco, J. A. Photon Upconversion Nanomaterials. Chem.
Soc. Rev. 2015, 44, 1299-1301.
(8) Liu, Q.; Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. Sub-10 nm Hexagonal Lanthanide-
Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in vivo. J. Am.
Chem. Soc. 2011, 133, 17122-17125.
188
(9) Wang, Y.-F.; Liu, G.-Y.; Sun, L.-D.; Xiao, J.-W.; Zhou, J.-C.; Yan, C.-H. Nd3+-
Sensitized Upconversion Nanophosphors: Efficient in vivo Bioimaging Probes with
Minimized Heating Effect. ACS Nano 2013, 7, 7200-7206.
(10) Mader, H. S.; Kele, P.; Saleh, S. M.; Wolfbeis, O. S. Upconverting Luminescent
Nanoparticles for Use in Bioconjugation and Bioimaging. Curr Opin Chem Biol.
2010, 14, 582-596.
(11) Kataria, M.; Yadav, K.; Haider, G.; Liao, Y. M.; Liou, Y.-R.; Cai, S.-Y.; Lin, H.-i.;
Chen, Y. H.; Paul Inbaraj, C. R.; Bera, K. P. Transparent, Wearable, Broadband, and
Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid
Photodetectors. ACS Photonics 2018, 5, 2336-2347.
(12) Kataria, M.; Yadav, K.; Cai, S.-Y.; Liao, Y.-M.; Lin, H.-I.; Shen, T. L.; Chen, Y.-H.;
Chen, Y.-T.; Wang, W.-H.; Chen, Y.-F. Highly Sensitive, Visible Blind, Wearable, and
Omnidirectional Near-Infrared Photodetectors. ACS Nano 2018, 12, 9596-9607.
(13) Yang, W.; Li, X.; Chi, D.; Zhang, H.; Liu, X. Lanthanide-Doped Upconversion
Materials: Emerging Applications for Photovoltaics and Photocatalysis.
Nanotechnology 2014, 25, 482001.
(14) van Sark, W. G.; de Wild, J.; Rath, J. K.; Meijerink, A.; Schropp, R. E. Upconversion
in Solar Cells. Nanoscale Res. Lett. 2013, 8, 81.
(15) Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The
Active‐CoreActive‐Shell Approach: A Strategy to Enhance the Upconversion
Luminescence in Lanthanide‐Doped Nanoparticles. Adv. Funct. Mater. 2009, 19,
2924-2929.
(16) Yin, Z.; Zhu, Y.; Xu, W.; Wang, J.; Xu, S.; Dong, B.; Xu, L.; Zhang, S.; Song, H.
Remarkable Enhancement of Upconversion Fluorescence and Confocal Imaging of
PMMA Opal/NaYF4: Yb3+, Tm3+/Er 3+ Nanocrystals. ChemComm 2013, 49, 3781-
3783.
(17) Xu, W.; Chen, X.; Song, H. Upconversion Manipulation by Local Electromagnetic
Field. Nano Today 2017, 17, 54-78.
(18) Tang, J.; Chen, L.; Li, J.; Wang, Z.; Zhang, J.; Zhang, L.; Luo, Y.; Wang, X. Selectively
Enhanced Red Upconversion Luminescence and Phase/Size Manipulation via Fe 3+
Doping in NaYF4: Yb, Er Nanocrystals. Nanoscale 2015, 7, 14752-14759.
(19) Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in Highly
Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9, 2415.
(20) Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified Spontaneous
Emission and Lasing from Lanthanide-Doped Up-Conversion Nanocrystals. ACS Nano
2013, 7, 11420-11426.
(21) Jin, L. M.; Chen, X.; Siu, C. K.; Wang, F.; Yu, S. F. Enhancing Multiphoton
Upconversion from NaYF4: Yb/Tm@ NaYF4 Core–Shell Nanoparticles via the Use of
Laser Cavity. ACS Nano 2017, 11, 843-849.
(22) Venkatesan, T. Pulsed Laser Deposition—Invention or Discovery? J. Phys. D 2013,
47, 034001.
189
(23) Fernandez-Bravo, A.; Yao, K.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B.; Tajon,
C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. Continuous-Wave Upconverting
Nanoparticle Microlasers. Nat. Nanotechnol. 2018, 13, 572-577.
(24) Stylianakis, M. M.; Maksudov, T.; Panagiotopoulos, A.; Kakavelakis, G.; Petridis, K.
Inorganic and Hybrid Perovskite Based Laser Devices: A Review. Materials 2019, 12,
859.
(25) Lin, H.-I.; Yadav, K.; Shen, K.-C.; Haider, G.; Roy, P. K.; Kataria, M.; Chang, T.-J.;
Li, Y.-H.; Lin, T.-Y.; Chen, Y.-T. Nanoscale Core–Shell Hyperbolic Structures for
Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of
Optical Manipulation. ACS Appl. Mater. Interfaces 2018, 11, 1163-1173.
(26) Redding, B.; Choma, M. A.; Cao, H. Speckle-Free Laser Imaging Using Random Laser
Illumination. Nat. Photonics 2012, 6, 355-359.
(27) Wiersma, D. S. Laser Physics: Random Lasers Explained? Nat. Photonics 2009, 3, 246.
(28) Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.;
Bera, K. P.; Lin, K.-H.; Lee, H.-M. A Highly-Efficient Single Segment White Random
Laser. ACS Nano 2018, 12, 11847-11859.
(29) Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent
Advances of Plasmonic Nanoparticles and their Applications. Materials 2018, 11,
1833.
(30) Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self‐
Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing. Adv.
Mater. 2013, 25, 2678-2685.
(31) Cushing, S. K.; Wu, N. Plasmon-Enhanced Solar Energy Harvesting. The
Electrochem. Soc. Interface 2013, 22, 63-67.
(32) Lodewijks, K.; Van Roy, W.; Borghs, G.; Lagae, L.; Van Dorpe, P. Boosting the
Figure-of-Merit of LSPR-Based Refractive Index Sensing by Phase-Sensitive
Measurements. Nano Lett. 2012, 12, 1655-1659.
(33) Hyppänen, I.; Hölsä, J.; Kankare, J.; Lastusaari, M.; Pihlgren, L.; Soukka, T. Up-
Conversion Luminescence of the NaRF4-NaR′F 4 (R: Y, Yb, Er) Core-Shell
Nanomaterials. J. Fluoresc. 2011, 21, 963-969.
(34) Priyam, A.; Idris, N. M.; Zhang, Y. Gold Nanoshell Coated NaYF4 Nanoparticles for
Simultaneously Enhanced Upconversion Fluorescence and Darkfield Imaging. J.
Mater. Chem. 2012, 22, 960-965.
(35) Das, A.; Mao, C.; Cho, S.; Kim, K.; Park, W. Over 1000-Fold Enhancement of
Upconversion Luminescence Using Water-Dispersible Metal-Insulator-Metal
Nanostructures. Nat. Commun. 2018, 9, 4828.
(36) Chen, X.; Rogers, J. A.; Lacour, S. P.; Hu, W.; Kim, D.-H. Materials Chemistry in
Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1431-1433.
(37) Hsu, Y.-T.; Tai, C.-T.; Wu, H.-M.; Hou, C.-F.; Liao, Y.-M.; Liao, W.-C.; Haider, G.;
Hsiao, Y.-C.; Lee, C.-W.; Chang, S.-W. Self-Healing Nanophotonics: Robust and Soft
Random Lasers. ACS Nano 2019, 13, 8977-8985.
190
(38) Hu, H. W.; Haider, G.; Liao, Y. M.; Roy, P. K.; Ravindranath, R.; Chang, H. T.; Lu, C.
H.; Tseng, C. Y.; Lin, T. Y.; Shih, W. H. Wrinkled 2D Materials: A Versatile Platform
for Low‐Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549.
(39) Liu, Q.; Yang, T.; Feng, W.; Li, F. Blue-Emissive Upconversion Nanoparticles for
Low-Power-Excited Bioimaging in vivo. J. Am. Chem. Soc. 2012, 134, 5390-5397.
(40) Zhan, Q.; Zhang, X.; Zhao, Y.; Liu, J.; He, S. Tens of Thousands‐Fold Upconversion
Luminescence Enhancement Induced by a Single Gold Nanorod. Laser Photonics Rev.
2015, 9, 479-487.
(41) Mohamed, M. M.; Fouad, S. A.; Elshoky, H. A.; Mohammed, G. M.; Salaheldin, T. A.
Antibacterial Effect of Gold Nanoparticles Against Corynebacterium
Pseudotuberculosis. J Vet Med Sci 2017, 5, 23-29.
(42) Li, Z.; Jiang, S.; Huo, Y.; Liu, A.; Zhang, C.; Yu, J.; Wang, M.; Li, C.; Lu, Z.; Man, B.
3D Hybrid Plasmonic Nanostructures with Dense Hot Spots Using Monolayer MoS2 as
Sub‐Nanometer Spacer. Adv. Mater. Interfaces 2018, 5, 1800661.
(43) Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum Yields,
Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell
Upconverting Nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922-4928.
(44) Bohren, C.; Huffman, D. Absorption and Scattering by an Arbitrary Particle.
Absorption and scattering of light by small particles 2007, 2, 57-81.
(45) Xiao, Y.-F.; Li, B.-B.; Jiang, X.; Hu, X.; Li, Y.; Gong, Q. High Quality Factor, Small
Mode Volume, Ring-Type Plasmonic Microresonator on a Silver Chip. J J. Phys. 2010,
43, 035402.
(46) Slobozhanyuk, A. P.; Ginzburg, P.; Powell, D. A.; Iorsh, I.; Shalin, A. S.; Segovia, P.;
Krasavin, A. V.; Wurtz, G. A.; Podolskiy, V. A.; Belov, P. A. Purcell Effect in
Hyperbolic Metamaterial Resonators. Phys. Rev. B 2015, 92, 195127.
(47) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Surface Plasmon Resonance Scattering
and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer
Diagnostics: Applications in Oral Cancer. Nano Lett. 2005, 5, 829-834.
(48) Bland, E.; Keshavarz, T.; Bucke, C. Using 2, 7-dichlorodihydrofluorescein-diacetate to
Assess Polysaccharides as Immunomodulating Agents. Mol. Biotechnol. 2001, 19, 125-
131.
(49) Hsu, C.-L.; Li, Y.-J.; Jian, H.-J.; Harroun, S. G.; Wei, S.-C.; Ravindranath, R.; Lai, J.-
Y.; Huang, C.-C.; Chang, H.-T. Green Synthesis of Catalytic Gold/Bismuth Oxyiodide
Nanocomposites with Oxygen Vacancies for Treatment of Bacterial Infections.
Nanoscale 2018, 10, 11808-11819.
(50) Verma, M. S.; Wei, S.-C.; Rogowski, J. L.; Tsuji, J. M.; Chen, P. Z.; Lin, C.-W.; Jones,
L.; Gu, F. X. Interactions Between Bacterial Surface and Nanoparticles Govern the
Performance of “Chemical Nose” Biosensors. Biosens. Bioelectron. 2016, 83, 115-
125.
(51) Abadeer, N. S.; Fülöp, G.; Chen, S.; Käll, M.; Murphy, C. J. Interactions of Bacterial
Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric
Sensing. ACS Appl. Mater. Interfaces 2015, 7, 24915-24925.
191
(52) Leuko, S.; Legat, A.; Fendrihan, S.; Stan-Lotter, H. Evaluation of the LIVE/DEAD
BacLight kit for Detection of Extremophilic Archaea and Visualization of
Microorganisms in Environmental Hypersaline Samples. Appl. Environ. Microbiol.
2004, 70, 6884-6886.
(53) Redford, G. I.; Clegg, R. M. Polar Plot Representation for Frequency-Domain
Analysis of Fluorescence Lifetimes. J. Fluoresc. 2005, 15, 805.
(54) Boens, N.; Qin, W.; Basarić, N.; Hofkens, J.; Ameloot, M.; Pouget, J.; Lefevre, J.-P.;
Valeur, B.; Gratton, E.; Vandeven, M. Fluorescence Lifetime Standards for Time and
Frequency Domain Fluorescence Spectroscopy. Anal Chem. 2007, 79, 2137-2149.
(55) Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B
1972, 6, 4370-4379.
(56) Liu, L.; Lu, K.; Yan, D.; Zhao, E.; Li, H.; Shahzad, M. K.; Zhang, Y. Concentration
Dependent Optical Transition Probabilities in Ultra-Small Upconversion Nanocrystals.
Opt. Express 2018, 26, 23471-23479.

6.5 References
(1) Ma, Z.; Kong, D.; Pan, L.; Bao, Z. Skin-inspired electronics: emerging semiconductor
devices and systems. J. Semicond. 2020, 41, 041601.
(2) Liu, Y.; Pharr, M.; Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable
electronics for wearable health monitoring. ACS Nano 2017, 11, 9614-9635.
(3) Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber‐based wearable
electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26,
5310-5336.
(4) Heo, J. S.; Eom, J.; Kim, Y. H.; Park, S. K. Recent progress of textile‐based wearable
electronics: a comprehensive review of materials, devices, and applications. Small 2018, 14,
1703034.
(5) Chow, P. C.; Someya, T. Organic Photodetectors for Next‐Generation Wearable
Electronics. Adv. Mater. 2020, 32, 1902045.
(6) Lee, S. Y.; Park, K.-I.; Huh, C.; Koo, M.; Yoo, H. G.; Kim, S.; Ah, C. S.; Sung, G. Y.;
Lee, K. J. Water-resistant flexible GaN LED on a liquid crystal polymer substrate for
implantable biomedical applications. Nano Energy 2012, 1, 145-151.
(7) Yang, B.; Yuan, W. Highly Stretchable and Transparent Double-Network Hydrogel
Ionic Conductors as Flexible Thermal–Mechanical Dual Sensors and Electroluminescent
Devices. ACS Appl. Mater. Interfaces 2019, 11, 16765-16775.
(8) Yang, Y.; Zhang, H.; Zhu, G.; Lee, S.; Lin, Z.-H.; Wang, Z. L. Flexible hybrid energy
cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 2013, 7,
785-790.
(9) Li, X.; Liu, H.; Xu, X.; Yang, B.; Yuan, H.; Guo, J.; Sang, F.; Jin, Y. Lotus-Leaf-
Inspired Flexible and Tunable Random Laser. ACS Appl. Mater. Interfaces 2020, 12, 10050-
10057.
244
(10) Chen, Y.-H.; Kataria, M.; Lin, H.-I.; Paul Inbaraj, C. R.; Liao, Y.-M.; Hu, H.-W.;
Chang, T.-J.; Lu, C.-H.; Shih, W.-H.; Wang, W.-H. Ultrahighly Photosensitive and Highly
Stretchable Rippled Structure Photodetectors Based on Perovskite Nanocrystals and Graphene.
ACS Appl. Electron. Mater. 2019, 1, 1517-1526.
(11) Mohanta, M. K.; Rawat, A.; Jena, N.; Ahammed, R.; De Sarkar, A. Interfacing Boron
Monophosphide with Molybdenum Disulfide for an Ultrahigh Performance in
Thermoelectrics, Two-Dimensional Excitonic Solar Cells, and Nanopiezotronics. ACS Appl.
Mater. Interfaces 2020, 12, 3114-3126.
(12) Kataria, M.; Yadav, K.; Haider, G.; Liao, Y. M.; Liou, Y.-R.; Cai, S.-Y.; Lin, H.-i.;
Chen, Y. H.; Paul Inbaraj, C. R.; Bera, K. P. Transparent, wearable, broadband, and highly
sensitive upconversion nanoparticles and graphene-based hybrid photodetectors. ACS
Photonics 2018, 5, 2336-2347.
(13) Kim, M.; Kang, P.; Leem, J.; Nam, S. A stretchable crumpled graphene photodetector
with plasmonically enhanced photoresponsivity. Nanoscale 2017, 9, 4058-4065.
(14) Lee, S.-K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho,
J. H.; Ahn, J.-H. Stretchable graphene transistors with printed dielectrics and gate electrodes.
Nano Lett. 2011, 11, 4642-4646.
(15) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H. I.; Liao, Y. M.; Inbaraj, C. R.
P.; Liou, Y. R.; Kataria, M.; Lu, K. L. Trapped Photons Induced Ultrahigh External Quantum
Efficiency and Photoresponsivity in Hybrid Graphene/Metal‐Organic Framework Broadband
Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.
(16) Engelhaupt, D. E.; Reardon, P. J.; Blackwell, L.; Warden, L.; Ramsey, B. D. In
Autonomous long-range open area fire detection and reporting, Thermosense XXVII,
International Society for Optics and Photonics: 2005; 164-175.
245
(17) Kumar, M.; Rani, S.; Pandey, A.; Gour, K. S.; Husale, S.; Singh, P.; Singh, V. Highly
responsive, low-bias operated SnSe2 nanostructured thin film NIR photodetector. J. Alloys
Compd. 2020, 155384.
(18) Kataria, M.; Yadav, K.; Cai, S.-Y.; Liao, Y.-M.; Lin, H.-I.; Shen, T. L.; Chen, Y.-H.;
Chen, Y.-T.; Wang, W.-H.; Chen, Y.-F. Highly Sensitive, Visible Blind, Wearable, and
Omnidirectional Near-Infrared Photodetectors. ACS Nano 2018, 12, 9596-9607.
(19) Zhou, X.; Tian, Z.; Kim, H. J.; Wang, Y.; Xu, B.; Pan, R.; Chang, Y. J.; Di, Z.; Zhou,
P.; Mei, Y. Rolling up MoSe2 Nanomembranes as a Sensitive Tubular Photodetector. Small
2019, 15, 1902528.
(20) Wang, H.; Zhen, H.; Li, S.; Jing, Y.; Huang, G.; Mei, Y.; Lu, W. Self-rolling and lighttrapping
in flexible quantum well–embedded nanomembranes for wide-angle infrared
photodetectors. Sci. Adv. 2016, 2, e1600027.
(21) Xu, C.; Pan, R.; Guo, Q.; Wu, X.; Li, G.; Huang, G.; An, Z.; Li, X.; Mei, Y. Ultrathin
Silicon Nanomembrane in a Tubular Geometry for Enhanced Photodetection. Adv. Opt. Mater.
2019, 7, 1900823.
(22) Hsu, Y. T.; Lin, Y. Y.; Chen, Y. Z.; Lin, H. Y.; Liao, Y. M.; Hou, C. F.; Wu, M. H.;
Deng, W. N.; Chen, Y. F. 3D Printed Random Lasers. Adv. Mater. Technol. 2020, 5, 1900742.
(23) Xie, Y.-Y.; Ni, P.-N.; Wang, Q.-H.; Kan, Q.; Briere, G.; Chen, P.-P.; Zhao, Z.-Z.;
Delga, A.; Ren, H.-R.; Chen, H.-D. Metasurface-integrated vertical cavity surface-emitting
lasers for programmable directional lasing emissions. Nat. Nanotechnol. 2020.
(24) Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified spontaneous
emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 2013, 7,
11420-11426.
246
(25) Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.;
Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed
quantum wells. Nat. Nanotechnol. 2014, 9, 891.
(26) Fernandez-Bravo, A.; Yao, K.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B.; Tajon,
C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. Continuous-wave upconverting nanoparticle
microlasers. Nat. Nanotechnol. 2018, 13, 572-577.
(27) Liu, Y.; Teitelboim, A.; Fernandez-Bravo, A.; Yao, K.; Altoe, M. V. P.; Aloni, S.;
Zhang, C.; Cohen, B. E.; Schuck, P. J.; Chan, E. M. Controlled Assembly of Upconverting
Nanoparticles for Low-Threshold Microlasers and Their Imaging in Scattering Media. ACS
Nano 2020, 14, 1508-1519.
(28) Fernandez-Bravo, A.; Wang, D.; Barnard, E. S.; Teitelboim, A.; Tajon, C.; Guan, J.;
Schatz, G. C.; Cohen, B. E.; Chan, E. M.; Schuck, P. J. Ultralow-threshold, continuous-wave
upconverting lasing from subwavelength plasmons. Nat. Mater. 2019, 18, 1172-1176.
(29) Cao, H. Lasing in random media. Waves in random media 2003, 13, R1-R39.
(30) Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.;
Bera, K. P.; Lin, K.-H.; Lee, H.-M. A highly-efficient single segment white random laser. ACS
Nano 2018, 12, 11847-11859.
(31) Kataria, M.; Yadav, K.; Nain, A.; Lin, H.-I.; Hu, H.-W.; Paul Inbaraj, C. R.; Chang, T.-
J.; Liao, Y.-M.; Cheng, H.-Y.; Lin, K.-H. Self-Sufficient and Highly Efficient Gold Sandwich
Upconversion Nanocomposite Lasers for Stretchable and Bio-applications. ACS Appl. Mater.
Interfaces 2020, 12, 19840-19854.
(32) Dubey, A.; Soni, A. K.; Kumari, A.; Dey, R.; Rai, V. K. Enhanced green upconversion
emission in NaYF4: Er3+/Yb3+/Li+ phosphors for optical thermometry. J. Alloys Compd. 2017,
693, 194-200.
247
(33) Thakur, M. K.; Gupta, A.; Fakhri, M. Y.; San Chen, R.; Wu, C. T.; Lin, K. H.;
Chattopadhyay, S. Optically coupled engineered upconversion nanoparticles and graphene for
a high responsivity broadband photodetector. Nanoscale 2019, 11, 9716-9725.
(34) Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec,
S.; Jiang, D.; Novoselov, K.; Roth, S. Raman spectrum of graphene and graphene layers. Phys.
Rev. Lett. 2006, 97, 187401.
(35) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer,
F. P. G.; Gatti, F.; Koppens, F. H. Hybrid graphene–quantum dot phototransistors with
ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
(36) Sharifi, T.; Gracia-Espino, E.; Barzegar, H. R.; Jia, X.; Nitze, F.; Hu, G.; Nordblad, P.;
Tai, C.-W.; Wågberg, T. Formation of nitrogen-doped graphene nanoscrolls by adsorption of
magnetic γ-Fe 2 O 3 nanoparticles. Nat. Commun. 2013, 4, 1-9.
(37) Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L. Random laser based
on waveguided plasmonic gain channels. Nano Lett. 2011, 11, 4295-4298.
(38) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.;
Chang, H.-T.; Chen, Y.-F. Highly stretchable and sensitive photodetectors based on hybrid
graphene and graphene quantum dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(39) Lin, W.-H.; Chen, T.-H.; Chang, J.-K.; Taur, J.-I.; Lo, Y.-Y.; Lee, W.-L.; Chang, C.-
S.; Su, W.-B.; Wu, C.-I. A direct and polymer-free method for transferring graphene grown by
chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784-1791.
(40) Jin, L. M.; Chen, X.; Siu, C. K.; Wang, F.; Yu, S. F. Enhancing multiphoton
upconversion from NaYF4: Yb/Tm@ NaYF4 core–shell nanoparticles via the use of laser
cavity. ACS Nano 2017, 11, 843-849.
248
(41) Hu, H. W.; Haider, G.; Liao, Y. M.; Roy, P. K.; Ravindranath, R.; Chang, H. T.; Lu, C.
H.; Tseng, C. Y.; Lin, T. Y.; Shih, W. H. Wrinkled 2D materials: A versatile platform for lowthreshold
stretchable random lasers. Adv. Mater. 2017, 29, 1703549.
(42) Carling, C. J.; Nourmohammadian, F.; Boyer, J. C.; Branda, N. R. Remote‐control
photorelease of caged compounds using near‐infrared light and upconverting nanoparticles.
Angew. Chem. Int. Ed. 2010, 49, 3782-3785.
指導教授 陳永芳 王偉華 陳賜原(Yang-Fang Chen Wei- Hua Wang Szu-Yuan Chen) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明