博碩士論文 105282607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.147.44.226
姓名 尚尼(Suneesh Meledath Valiyaveettil)  查詢紙本館藏   畢業系所 物理學系
論文名稱 藉由調控三元方鈷礦半導體之電子能帶結構以達到高熱電效率之研究
(Electronic Band Structure Engineering for High Thermoelectric Performance in Ternary-Skutterudite Semiconductors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱電材料因為具備直接將廢熱轉換成電力的能力,因此受到廣泛的關注。近年來,熱電材料研究的復甦更進一步提升了熱電材料品質因數(ZT),甚至已經充分探索的材料也有大幅度地提升。其中CoSb3屬方鈷礦尤其獲得許多的關注,因其具有熱電材料中特別優異的熱電性能、機械性質、熱穩定性以及環境友善性。而方鈷礦具有卓越的熱電性能,主要可以歸因於填充在空隙空間中的填充原子所導致的低導熱性。除此之外,降低熱導電性的方式也可以藉由藉由改變材料的聲子光譜進行,例如利用IV–VI族組對扭曲矩形的氮族環。雖然目前已經清楚熱電材料若要獲得高ZT值需要具備低熱導性,但是三元方鈷礦的本質電子結構與熱電性能之間的關係,經常被低估或完全忽略。因此本論文將會藉由結合實驗與計算的結果,對於高熱電性能的Co(Ge0.5Te0.5)3屬的三元方鈷礦進行深入的探討。此研究成果發現高ZT值不只與主能帶有相關,與次導電帶的載子傳輸也有直接的關聯,在確立了三元方鈷礦的優異熱電性質起源之後。本研究論文也進一步探討如何實現精細控制CoSn1.5Te1.5-x屬三元方鈷礦中的載子性質。並發現可以藉由化學方式調控結構中的四元Sn2Te2環,並發現主要載流子不只侷限於電子或電洞所組成。研究結果更進一步使用理論計算以及各式的光譜技術如X射線光電子能譜、X射線吸收光譜來探討半導體的導電特性。研究成果最終可藉由Ni與Co原子置換方式提升70倍的ZT值。
摘要(英) Thermoelectric materials have received a lot of attention because of their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectric research has resulted in significant improvements in the thermoelectric figure–of–merit, zT, even for well-studied materials. CoSb3-based skutterudites stand out among thermoelectric materials for their excellent thermoelectric performance, robust mechanical properties, thermal stability, and environmentally friendly compositions in both space and terrestrial applications. Skutterudite material’s thermoelectric excellence is primarily attributed to its low thermal conductivity as a result of the addition of filler atoms (R) into the void space. An alternative approach for lowering thermal conductivity is to distort the rectangular pnictogen (Sb4) rings with group IV–VI pairs because the vibrations of the latter dominate the phonon spectrum of binary skutterudites. Although low thermal conductivity is necessary for high zT, the intrinsic electronic structure in ternary skutterudites is frequently understated or ignored entirely. The electronic origin of the high thermoelectric performance of Co(Ge0.5Te0.5)3-based ternary skutterudites is investigated in this thesis by combining experimental and computational studies. The high zT was demonstrated to be a direct result of the carrier transport contribution from a secondary conduction band, in addition to the primary band. After establishing the electronic origin of high thermoelectric performance in ternary skutterudite, the thesis moves to elaborate on how to achieve a fine control of carriers in ternary skutterudite like CoSn1.5Te1.5−x. It is found that the dominant carrier could be either electrons or holes via chemically tuning the quaternary Sn2Te2 rings in the structure. Both theoretical calculation and different spectroscopic probes, such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were employed to unveil the conduction type switching details. On the other hand, a Ni-for-Co substitution ultimately led to a 70-fold increase in the dimensionless figure-of-merit (zT) at 723K.
關鍵字(中) ★ 熱電
★ 方鈷礦
★ 電子能帶結構
★ 密度泛函理論
★ 聲子散射
關鍵字(英) ★ Thermoelectrics
★ Skutterudite
★ Electronic band structure
★ Density functional theory
★ Phonon scattering
論文目次 論文摘要 i
Abstract ii
Acknowledgment iv
List of Figures ix
List of Tables xix
List of Abbreviations xx
Chapter 1 1
1. Introduction 1
1.1. Motivations of Thermoelectric Research 1
1.2. The physics of thermoelectrics 3
1.3. Skutterudites as thermoelectric materials 10
1.4. Ternary skutterudites 13
1.5. Thesis overview 15
Chapter 2 16
2. Material Synthesis and Characterization Techniques 16
2.1. Sample preparation 16
2.2. X-ray powder diffraction (XRD) 18
2.3. X-ray Absorption Spectroscopy (XAS) 19
2.4. Electronic/Thermal Transport Properties Measurement 20
2.4.1. Electrical conductivity and Seebeck coefficient 20
2.4.2. Thermal conductivity (Laser flash method) 21
Chapter 3 23
3. Enhanced Thermoelectric Performance in Ternary Skutterudite CoGe0.5Te0.5)3 via Band Engineering 23
3.1. Introduction 23
3.2. Experimental Methods 26
3.2.1. Sample Preparation 26
3.2.2. Material characterizations 26
3.2.3. DFT Calculations 28
3.3. Results and Discussion 29
3.3.1. Structural Characterization 29
3.3.2. Band Structure Calculations 37
3.3.3. Thermoelectric Properties 42
3.4. Conclusions 50
Chapter 4 52
4. Enhanced Thermoelectric Performance of Skutterudite CoSn1.5Te1.5−x with Switchable Conduction Behavior 52
4.1. Introduction 52
4.2. Experimental Section 55
4.2.1. Sample Preparation 55
4.2.2. Characterizations 56
4.2.3. DFT Calculations 57
4.3. Results and Discussion 58
4.3.1. Extrinsic Doping of Ni Impurities in CoSn1.5Te1.5-x 72
4.4. Conclusion 77
Chapter 5 79
5. Summary and Future Perspective 79
5.1. Summary 79
5.2. Future perspective 80
5.2.1. Further doping possibilities in CoX1.5Te1.5 80
5.2.2. Introducing filler atom into ternary skutterudites 81
5.2.3. The impact of the distorted anion rings on the phonon dynamics of CoSn1.5Te1.5 skutterudite material by Nuclear Scattering Measurements at DESY 82
Bibliography 84
List of publications 97
List of Conferences/Awards 99
參考文獻 1. Dyurgerov, M. B.; Meier, M. F., Twentieth century climate change: Evidence from small glaciers. P Natl Acad Sci USA 2000, 97 (4), 1406-1411.
2. van der Linden, S. L.; Leiserowitz, A. A.; Feinberg, G. D.; Maibach, E. W., The Scientific Consensus on Climate Change as a Gateway Belief: Experimental Evidence. Plos One 2015, 10 (2).
3. Hopkin, M., Greenhouse-gas levels highest for 650,000 years. Nature 2005.
4. Oreskes, N., The scientific consensus on climate change (vol 306, pg 1686, 2004). Science 2005, 307 (5708), 355-355.
5. Maibach, E.; Myers, T.; Leiserowitz, A., Climate scientists need to set the record straight: There is a scientific consensus that human-caused climate change is happening. Earths Future 2014, 2 (5), 295-298.
6. Peter T. Doran, M. K. Z., Examining the Scientific Consensus on Climate Change. Eos Trans. AGU 2009, 90 (3), 22-23.
7. Lawrence-Livermore National Laboratory. Estimated U.S. Energy Consumption in 2021, https://flowcharts.llnl.gov/. 2022.
8. Salvador, J. R.; Cho, J. Y.; Ye, Z. X.; Moczygemba, J. E.; Thompson, A. J.; Sharp, J. W.; Konig, J. D.; Maloney, R.; Thompson, T.; Sakamoto, J.; Wang, H.; Wereszczak, A. A.; Meisner, G. P., Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules. J. Electron. Mater. 2013, 42 (7), 1389-1399.
9. Liebl, J.; Neugebauer, S.; Eder, A.; Linde, M.; Mazar, B.; Stütz, W., The thermoelectric generator from BMW is making use of waste heat. MTZ worldwide 2009, 70 (4), 4-11.
10. Prilepo, Y. P.; Pustovalov, A. A.; Sinyavskiy, V. V.; Sudak, N. M.; Yatsenko, O. B., Problems of designing radioisotope thermoelectric power generators with a service life of decades for use in outer space exploration vehicles. Thermal Engineering 2012, 59 (13), 981-983.
11. Martin, J.; Tritt, T.; Uher, C., High temperature Seebeck coefficient metrology. J. Appl. Phys. 2010, 108 (12).
12. Goldsmid, H. J., Introduction to Thermoelectricity. Springer: 2010; Vol. 121.
13. Rowe, D. M., CRC Handbook of Thermoelectrics. CRC Press: 1995.
14. Green, M. A., The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications 2009, 17 (3), 183-189.
15. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y., Solar cell efficiency tables (version 51). Progress in Photovoltaics: Research and Applications 2018, 26 (1), 3-12.
16. Jones., M. N. F. a. H., The Theory of the Properties of Metals and Alloys. New York: Dover Publications.: 1958.
17. Ziman, J. M., Principles of the Theory of Solids. 2 ed.; Cambridge University Press: Cambridge, 1972.
18. H., S. S., The Oxford Solid State Basics First edition ed.; Oxford University Press.: 2016.
19. Ren, W. Y.; Shi, X.; Wang, Z. M.; Ren, Z. F., Crystallographic design for half-Heuslers with low lattice thermal conductivity. Mater. Today Phys. 2022, 25, 100704.
20. Toberer, E. S.; Zevalkink, A.; Snyder, G. J., Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21 (40), 15843-15852.
21. Wang, Z.; Alaniz, J. E.; Jang, W.; Garay, J. E.; Dames, C., Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths. Nano Lett. 2011, 11 (6), 2206-2213.
22. Slack, G. A., Handbook of Thermoelectrics. Chemical Rubber, Boca Raton, FL: 1995.
23. Hermann, R. P.; Jin, R.; Schweika, W.; Grandjean, F.; Mandrus, D.; Sales, B. C.; Long, G. J., Einstein Oscillators in Thallium Filled Antimony Skutterudites. Phys. Rev. Lett. 2003, 90 (13), 135505.
24. Keppens, V.; Mandrus, D.; Sales, B. C.; Chakoumakos, B. C.; Dai, P.; Coldea, R.; Maple, M. B.; Gajewski, D. A.; Freeman, E. J.; Bennington, S., Localized vibrational modes in metallic solids. Nature 1998, 395 (6705), 876-878.
25. Oftedal, I., XXXIII. Die Kristallstruktur von Skutterudit und Speiskobalt-Chloanthit. 1928, 66 (1-6), 517-546.
26. Arne Kjekshus, T. R., Compounds with the Skutterudite Type Crystal Structure. III. Structural Data for Arsenides and Antimonides. Acta Chem. Scand. 1974, 28a, 99-103.
27. Sales, B. C.; Mandrus, D.; Chakoumakos, B. C.; Keppens, V.; Thompson, J. R., Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 1997, 56 (23), 15081-15089.
28. Nolas, G. S.; Kaeser, M.; Littleton, R. T.; Tritt, T. M., High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 2000, 77 (12), 1855-1857.
29. Sales, B. C.; Mandrus, D.; Williams, R. K., Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. Science 1996, 272 (5266), 1325-8.
30. Shi, X.; Zhang, W.; Chen, L. D.; Yang, J., Filling Fraction Limit for Intrinsic Voids in Crystals: Doping in Skutterudites. Phys. Rev. Lett. 2005, 95 (18), 185503.
31. Kuznetsov, V. L.; Kuznetsova, L. A.; Rowe, D. M., Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys.: Condens. Matter 2003, 15 (29), 5035-5048.
32. Morelli, D. T.; Meisner, G. P.; Chen, B.; Hu, S.; Uher, C., Cerium filling and doping of cobalt triantimonide. Phys Rev B 1997, 56 (12), 7376-7383.
33. Mei, Z. G.; Zhang, W.; Chen, L. D.; Yang, J., Filling fraction limits for rare-earth atoms in CoSb3: An ab initio approach. Phys. Rev. B 2006, 74 (15), 153202.
34. Shi, X.; Zhang, W.; Chen, L. D.; Yang, J.; Uher, C., Theoretical study of the filling fraction limits for impurities in CoSb3. Phys. Rev. B 2007, 75 (23), 235208.
35. Tang, Y.; Gibbs, Z. M.; Agapito, L. A.; Li, G.; Kim, H.-S.; Nardelli, Marco B.; Curtarolo, S.; Snyder, G. J., Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater 2015, 14 (12), 1223-1228.
36. Dimitrov, I. K.; Manley, M. E.; Shapiro, S. M.; Yang, J.; Zhang, W.; Chen, L. D.; Jie, Q.; Ehlers, G.; Podlesnyak, A.; Camacho, J.; Li, Q. A., Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12. Phys. Rev. B 2010, 82 (17), 174301.
37. Feldman, J. L.; Singh, D. J., Lattice dynamics of skutterudites: First-principles and model calculations for CoSb3. Phys. Rev. B 1996, 53 (10), 6273-6282.
38. Bos, J. W. G.; Cava, R. J., Synthesis, crystal structure and thermoelectric properties of IrSn1.5Te1.5-based skutterudites. Solid State Commun. 2007, 141 (1), 38-41.
39. Navratil, J.; Plechacek, T.; Benes, L.; Drasar, C.; Laufek, F., Thermoelectric Properties of Co4Sn6Se6 Ternary Skutterudites. J. Electron. Mater. 2010, 39 (9), 1880-1884.
40. Vaqueiro, P.; Sobany, G. G.; Powell, A. V., A synchrotron powder X-ray diffraction study of the skutterudite-related phases AB1.5Te1.5 (A = Co, Rh, Ir; B = Ge, Sn). Dalton Trans. 2010, 39 (4), 1020-1026.
41. Vaqueiro, P.; Sobany, G. G.; Stindl, M., Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M=Co, Rh, Ir). J. Solid State Chem. 2008, 181 (4), 768-776.
42. Vaqueiro, P.; Sobany, G. G.; Powell, A. V.; Knight, K. S., Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5. J. Solid State Chem. 2006, 179 (7), 2047-2053.
43. Jung, D.; Whangbo, M. H.; Alvarez, S., Importance of the X4 ring orbitals for the semiconducting, metallic, or superconducting properties of skutterudites MX3 and RM4X12. Inorg. Chem. 1990, 29 (12), 2252-2255.
44. Volja, D.; Kozinsky, B.; Li, A.; Wee, D.; Marzari, N.; Fornari, M., Electronic, vibrational, and transport properties of pnictogen-substituted ternary skutterudites. Phys. Rev. B 2012, 85 (24).
45. Kaltzoglou, A.; Powell, A. V.; Knight, K. S.; Vaqueiro, P., High-temperature order–disorder transitions in the skutterudites CoGe1.5Q1.5 (Q = S, Te). J. Solid State Chem. 2013, 198, 525-531.
46. Zevalkink, A.; Star, K.; Aydemir, U.; Snyder, G. J.; Fleurial, J.-P.; Bux, S.; Vo, T.; von Allmen, P., Electronic structure and thermoelectric properties of pnictogen-substituted ASn1.5Te1.5 (A = Co, Rh, Ir) skutterudites. J. Appl. Phys. 2015, 118 (3).
47. Crawford, C. M.; Ortiz, B. R.; Gorai, P.; Stevanovic, V.; Toberer, E. S., Experimental and computational phase boundary mapping of Co4Sn6Te6. J. Mater. Chem. A 2018, 6 (47), 24175-24185.
48. DiSalvo, F. J., Thermoelectric cooling and power generation. Science 1999, 285 (5428), 703-706.
49. Shi, X. L.; Zou, J.; Chen, Z. G., Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem Rev 2020, 120 (15), 7399-7515.
50. Haras, M.; Skotnicki, T., Thermoelectricity for IoT - A review. Nano Energy 2018, 54, 461-476.
51. Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T., Thermoelectric materials and applications for energy harvesting power generation. Sci Technol Adv. Mat. 2018, 19 (1), 836-862.
52. Snyder, G. J.; Toberer, E. S., Complex thermoelectric materials. Nat. Mater. 2008, 7 (2), 105-114.
53. Tan, G. J.; Zhao, L. D.; Kanatzidis, M. G., Rationally Designing High-Performance Bulk Thermoelectric Materials. Chemical Reviews 2016, 116 (19), 12123-12149.
54. Uher, C., Skutterudites: Prospective novel thermoelectrics. Semiconduct. Semimet. 2001, 69, 139-253.
55. Evans, H. A.; Wu, Y.; Seshadri, R.; Cheetham, A. K., Perovskite-related ReO3-type structures. Nat. Rev. Mater. 2020, 5 (3), 196-213.
56. Hanus, R.; Guo, X. Y.; Tang, Y. L.; Li, G. D.; Snyder, G. J.; Zeier, W. G., A Chemical Understanding of the Band Convergence in Thermoelectric CoSb3 Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions. Chem. Mater. 2017, 29 (3), 1156-1164.
57. Isaacs, E. B.; Wolverton, C., Electronic Structure and Phase Stability of Yb-Filled CoSb3 Skutterudite Thermoelectrics from First-Principles. Chem. Mater. 2019, 31 (16), 6154-6162.
58. Wang, Z. Y.; Xi, J. Y.; Ning, J. Y.; Guo, K.; Duan, B.; Luo, J.; Snyder, G. J.; Yang, J.; Zhang, W. Q., Temperature-Dependent Band Renormalization in CoSb3 Skutterudites Due to Sb-Ring-Related Vibrations. Chem. Mater. 2021, 33 (3), 1046-1052.
59. Gainza, J.; Serrano-Sanchez, F.; Rodrigues, J. E.; Prado-Gonjal, J.; Nemes, N. M.; Biskup, N.; Dura, O. J.; Martinez, J. L.; Fauth, F.; Alonso, J. A., Unveiling the Correlation between the Crystalline Structure of M-Filled CoSb3 (M = Y, K, Sr) Skutterudites and Their Thermoelectric Transport Properties. Adv. Funct. Mater. 2020, 30 (36).
60. Nolas, G. S.; Slack, G. A.; Morelli, D. T.; Tritt, T. M.; Ehrlich, A. C., The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys. 1996, 79 (8), 4002-4008.
61. Shi, X.; Yang, J.; Salvador, J. R.; Chi, M.; Cho, J. Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L., Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. J. Am. Chem. Soc. 2011, 133 (20), 7837-7846.
62. Toprak, M. S.; Stiewe, C.; Platzek, D.; Williams, S.; Bertini, L.; Muller, E. C.; Gatti, C.; Zhang, Y.; Rowe, M.; Muhammed, M., The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 2004, 14 (12), 1189-1196.
63. Rogl, G.; Grytsiv, A.; Yubuta, K.; Puchegger, S.; Bauer, E.; Raju, C.; Mallik, R. C.; Rogl, P., In-doped multifilled n-type skutterudites with ZT=1.8. Acta Mater. 2015, 95, 201-211.
64. Khan, A. U.; Kobayashi, K.; Tang, D. M.; Yamauchi, Y.; Hasegawa, K.; Mitome, M.; Xue, Y. M.; Jiang, B. Z.; Tsuchiya, K.; Golberg, D.; Bando, Y.; Mori, T., Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 2017, 31, 152-159.
65. King, R. B., Chemical bonding topology of binary and ternary transition-metal polyphosphides. Inorg. Chem. 1989, 28 (15), 3048-3051.
66. Fleurial, J. P.; Caillat, T.; Borshchevsky, A., Skutterudites: An update. Proceedings Ict′97 - Xvi International Conference on Thermoelectrics 1997, 1-11.
67. Bang, S.; Wee, D.; Li, A.; Fornari, M.; Kozinsky, B., Thermoelectric properties of pnictogen-substituted skutterudites with alkaline-earth fillers using first-principles calculations. J. Appl. Phys. 2016, 119 (20).
68. Lin, Q.; Smalley, A. L. E.; Johnson, D. C.; Martin, J.; Nolas, G. S., Synthesis and properties of CexCo4Ge6Se6. Chem. Mater. 2007, 19 (26), 6615-6620.
69. Rodriguezcarvajal, J., Recent Advances in Magnetic-Structure Determination by Neutron Powder Diffraction. Physica. B 1993, 192 (1-2), 55-69.
70. Roisnel, T.; Rodriguez-Carvajal, J., WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378-381, 118-123.
71. Finger, L. W.; Cox, D. E.; Jephcoat, A. P., A Correction for Powder Diffraction Peak Asymmetry Due to Axial Divergence. J. Appl. Crystallogr. 1994, 27, 892-900.
72. Alleno, E.; Berardan, D.; Byl, C.; Candolfi, C.; Daou, R.; Decourt, R.; Guilmeau, E.; Hebert, S.; Hejtmanek, J.; Lenoir, B.; Masschelein, P.; Ohorodnichuk, V.; Pollet, M.; Populoh, S.; Ravot, D.; Rouleau, O.; Soulier, M., Invited article: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3. Rev. Sci. Instrum. 2015, 86 (1), 011301.
73. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 (16), 11169-11186.
74. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev.B 1999, 59 (3), 1758-1775.
75. Blochl, P. E., Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953-17979.
76. J. P. Perdew, P. Z., and H. Eschrig, Electronic Structure of Solids 91. Akademie Verlag, Berlin: 1991; Vol. 11.
77. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (7), 3865-3868.
78. Eriksson, F.; Fransson, E.; Erhart, P., The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learning. Adv Theor Simul 2019, 2 (5).
79. Togo, A.; Tanaka, I., First principles phonon calculations in materials science. Scripta Mater. 2015, 108, 1-5.
80. Togo, A.; Chaput, L.; Tanaka, I., Distributions of phonon lifetimes in Brillouin zones. Phys Rev B 2015, 91 (9).
81. Partik, M.; Lutz, H. D., Semiempirical band structure calculations on skutterudite-type compounds. Phys. Chem. Miner. 1999, 27 (1), 41-46.
82. Madsen, G. K. H.; Singh, D. J., BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175 (1), 67-71.
83. Sharp, J. W.; Jones, E. C.; Williams, R. K.; Martin, P. M.; Sales, B. C., Thermoelectric Properties of Cosb3 and Related Alloys. J. Appl. Phys. 1995, 78 (2), 1013-1018.
84. Guo, R.; Wang, X.; Huang, B., Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects. Sci. Rep. 2015, 5, 7806.
85. Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature. 2012, 488 (7411), 294-303.
86. Tachibana, Y.; Vayssieres, L.; Durrant, J. R., Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6 (8), 511-518.
87. Qorbani, M.; Sabbah, A.; Lai, Y. R.; Kholimatussadiah, S.; Quadir, S.; Huang, C. Y.; Shown, I.; Huang, Y. F.; Hayashi, M.; Chen, K. H.; Chen, L. C., Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst. Nat. Commun. 2022, 13 (1), 1256.
88. Bell, L. E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321 (5895), 1457-61.
89. Mao, J.; Chen, G.; Ren, Z. F., Thermoelectric cooling materials. Nat. Mater. 2021, 20 (4), 454-461.
90. Zhang, X. Y.; Bu, Z. L.; Lin, S. Q.; Chen, Z. W.; Li, W.; Pei, Y. Z., GeTe Thermoelectrics. Joule 2020, 4 (5), 986-1003.
91. Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; La Commare, U.; Micale, G., Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 2018, 138, 207-216.
92. Xing, T.; Song, Q. F.; Qiu, P. F.; Zhang, Q. H.; Gu, M.; Xia, X. G.; Liao, J. C.; Shi, X.; Chen, L. D., High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 2021, 14 (2), 995-1003.
93. Liu, W. D.; Wang, D. Z.; Liu, Q. F.; Zhou, W.; Shao, Z. P.; Chen, Z. G., High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. Adv. Energy Mater. 2020, 10 (19), 2000367.
94. Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473 (7345), 66-69.
95. Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489 (7416), 414-418.
96. He, W. K.; Wang, D. Y.; Wu, H. J.; Xiao, Y.; Zhang, Y.; He, D. S.; Feng, Y.; Hao, Y. J.; Dong, J. F.; Chetty, R.; Hao, L. J.; Chen, D. F.; Qin, J. F.; Yang, Q.; Li, X.; Song, J. M.; Zhu, Y. C.; Xu, W.; Niu, C. L.; Li, X.; Wang, G. T.; Liu, C.; Ohta, M.; Pennycook, S. J.; He, J. Q.; Li, J. F.; Zhao, L. D., High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019, 365 (6460), 1418-1424.
97. Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J., Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11 (5), 422-425.
98. Liu, Z. H.; Guo, S. P.; Wu, Y. X.; Mao, J.; Zhu, Q.; Zhu, H. T.; Pei, Y. Z.; Sui, J. H.; Zhang, Y. S.; Ren, Z. F., Design of High-Performance Disordered Half-Heusler Thermoelectric Materials Using 18-Electron Rule. Adv. Funct. Mater. 2019, 29 (44), 1905044.
99. Zhou, C. J.; Lee, Y. K.; Yu, Y.; Byun, S.; Luo, Z. Z.; Lee, H.; Ge, B. Z.; Lee, Y. L.; Chen, X. Q.; Lee, J. Y.; Cojocaru-Miredin, O.; Chang, H.; Im, J.; Cho, S. P.; Wuttig, M.; Dravid, V. P.; Kanatzidis, M. G.; Chung, I., Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20 (10), 1378-1384.
100. Nolas, G. S.; Morelli, D. T.; Tritt, T. M., Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 1999, 29, 89-116.
101. Li, W.; Mingo, N., Thermal conductivity of fully filled skutterudites: Role of the filler. Phys. Rev. B 2014, 89 (18), 184304.
102. Chi, H.; Kim, H.; Thomas, J. C.; Su, X.; Stackhouse, S.; Kaviany, M.; Van der Ven, A.; Tang, X.; Uher, C., Configuring pnicogen rings in skutterudites for low phonon conductivity. Phys. Rev. B 2012, 86 (19).
103. Korenstein, R.; Soled, S.; Wold, A.; Collin, G., Preparation and characterization of the skutterudite-related phases CoGe1.5S1.5 and CoGe1.5Se1.5. Inorg. Chem. 1977, 16 (9), 2344-2346.
104. Laufek, F.; Návrátil, J.; Goliáš, V., Synthesis and Rietveld refinement of skutterudite-related phase CoSn1.5Te1.5. Powder Diffr. 2012, 23 (1), 15-19.
105. Zhao, W. Y.; Wei, P.; Zhang, Q. J.; Dong, C. L.; Liu, L. S.; Tang, X. F., Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler. Journal of the American Chemical Society 2009, 131 (10), 3713-3720.
106. Rogl, G.; Grytsiv, A.; Heinrich, P.; Bauer, E.; Kumar, P.; Peranio, N.; Eibl, O.; Horky, J.; Zehetbauer, M.; Rogl, P., New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater. 2015, 91, 227-238.
107. Rogl, G.; Grytsiv, A.; Rogl, P.; Peranio, N.; Bauer, E.; Zehetbauer, M.; Eibl, O., n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT approximate to 2.0. Acta Mater. 2014, 63, 30-43.
108. Ghosh, S.; Valiyaveettil, S. M.; Shankar, G.; Maity, T.; Chen, K. H.; Biswas, K.; Suwas, S.; Mallik, R. C., Enhanced Thermoelectric Properties of In-Filled Co4Sb12 with InSb Nanoinclusions. Acs Appl. Energ. Mater. 2020, 3 (1), 635-646.
109. Valiyaveettil, S. M.; Nguyen, D. L.; Wong, D. P.; Hsing, C. R.; Paradis-Fortin, L.; Qorbani, M.; Sabbah, A.; Chou, T. L.; Wu, K. K.; Rathinam, V.; Wei, C. M.; Chen, L. C.; Chen, K. H., Enhanced Thermoelectric Performance in Ternary Skutterudite Co(Ge0.5Te0.5)3 via Band Engineering. Inorg. Chem. 2022, 61 (10), 4442-4452.
110. Rodrigues, J. E. F. S.; Gainza, J.; Serrano-Sanchez, F.; Marini, C.; Huttel, Y.; Nemes, N. M.; Martinez, J. L.; Alonso, J. A., Atomic Structure and Lattice Dynamics of CoSb3 Skutterudite-Based Thermoelectrics. Chem. Mater. 2022, 34 (3), 1213-1224.
111. Zhao, W. Y.; Wei, P.; Zhang, Q. J.; Peng, H.; Zhu, W. T.; Tang, D. G.; Yu, J.; Zhou, H. Y.; Liu, Z. Y.; Mu, X.; He, D. Q.; Li, J. C.; Wang, C. L.; Tang, X. F.; Yang, J. H., Multi-localization transport behaviour in bulk thermoelectric materials. Nat. Commun. 2015, 6, 6197.
112. Powell, C. J., Recommended Auger parameters for 42 elemental solids. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (1-2), 1-3.
113. Themlin, J. M.; Chtaib, M.; Henrard, L.; Lambin, P.; Darville, J.; Gilles, J. M., Characterization of Tin Oxides by X-Ray-Photoemission Spectroscopy. Phy. Rev. B 1992, 46 (4), 2460-2466.
114. Lefebvre-Devos, I.; Lassalle, M.; Wallart, X.; Olivier-Fourcade, J.; Monconduit, L. R.; Jumas, J. C., Bonding in skutterudites: Combined experimental and theoretical characterization of CoSb3. Phys. Rev. B 2001, 63 (12), 125110.
115. Anno, H.; Matsubara, K.; Caillat, T.; Fleurial, J. P., Valence-band structure of the skutterudite compounds CoAs3, CoSb3, and RhSb3 studied by x-ray photoelectron spectroscopy. Phys. Rev. B 2000, 62 (16), 10737-10743.
116. Devos, I.; Womes, M.; Heilemann, M.; Olivier-Fourcade, J.; Jumas, J. C.; Tirado, J. L., Lithium insertion mechanism in CoSb3 analysed by Sb-121 Mossbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations. J. Mater. Chem. 2004, 14 (11), 1759-1767.
117. Li, J. L.; Duan, B.; Yang, H. J.; Wang, H. T.; Li, G. D.; Yang, J.; Chen, G.; Zhai, P. C., Thermoelectric properties of electronegatively filled SyCo4-xNixSb12 skutterudites. J. Mater. Chem. C 2019, 7 (26), 8079-8085.
118. Anno, H.; Matsubara, K.; Notohara, Y.; Sakakibara, T.; Tashiro, H., Effects of doping on the transport properties of CoSb3. J. Appl. Phys. 1999, 86 (7), 3780-3786.
119. Qin, D.; Cui, B.; Meng, X.; Qin, P.; Xie, L.; Zhang, Q.; Liu, W.; Cao, J.; Cai, W.; Sui, J., High thermoelectric performance from high carrier mobility and reduced lattice thermal conductivity in Ba, Yb double-filled Skutterudites. Mater. Today Phys. 2019, 8, 128-137.
120. Puyet, M.; Lenoir, B.; Dauscher, A.; Candolfi, C.; Hejtmanek, J.; Stiewe, C.; Muller, E., Influence of Ni impurities on the thermoelectric properties of Ca-partially filled skutterudites CaxCo4Sb12. Appl. Phys. Lett. 2012, 101 (22), 222105.
指導教授 陳貴賢 陳賜原(Kuei-Hsien Chen Szu-Yuan Chen) 審核日期 2022-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明