博碩士論文 105286004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.191.234.150
姓名 張雅真(Ya-Chen Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性
(Analysis of optical property of hyperbolic metamaterials designed by dielectric-metal symmetric film stacks)
相關論文
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 超穎材料的重要研究為材料內的次波長結構設計與搭配,至今已發表的文獻中講述了超穎材料的異常特性以及應用,而雙曲超穎材料因為具有開方式的等頻率曲線,較大波向量的倏逝波能在其中傳遞,對於繞射極限的突破以及積體光路的實際應用能提供一良好方式。但這些文獻中對於的超穎材料的結構設計,如材料的選擇、金屬與介電質材料的體積填充比以及堆疊層數等並未詳細說明以及探討,並且對於導納的匹配也未加以考慮,導納不匹配的損耗與金屬材料的吸收會減少電磁波耦合至超穎材料中
本研究以介電質-金屬-介電質對稱膜堆為單位晶胞進行設計,討論多層結構在次波長尺度下的等效介質特性。利用等效模型計算並透過分枝的選擇以獲得準確的等效光學常數,等效光學常數決定了電磁波在介質內的傳遞行為與特性,虛數部分決定電磁波的衰減程度。此外更進一步計算並且設計符合與入射介質導納匹配的等效介質結構參數,等效導納與入射介質的匹配程度影響了等效介質與入射介質介面間的光學反射特性,計算出最佳的導納匹配參數能使反射所造成的損耗降至最低以提高耦合效能。
雙曲超穎材料因其獨特的等頻率曲線包含較高的波向量範圍可應用於許多領域,利用此方法能精準的計算並獲得所需的光學特性以及良好的導納匹配,且能快速的獲得最佳的結構參數值,包括膜層厚度、入射角度、單位晶胞的週期數以及基板的折射率。
而且此種計算與設計方法適用於各個波長、材料的選擇搭配以及各種對稱結構,對於雙曲超穎材料應用的結構參數設計提供了一大幫助,能精準有效的獲得符合雙曲超穎材料特性以及導納匹配的最佳設計結構參數。
摘要(英) One of the important works on metamaterials is the design of the subwavelength structure and the composition of the materials. There are abnormal characteristics and applications of metamaterials that have been reported in the literatures. Hyperbolic metamaterials have larger wave vectors due to the open isofrequency curves. The evanescent wave with high-k vectors can propagate in it, which can provide a method to break the diffraction limit and for the practical application of the integrated optical circuit. However, the structural design of metamaterials in those literatures, such as the selection of materials, the volume filling ratio of metal and dielectric materials, etc., was not been described and discussed in detail, and the matching of admittance was also not considered. There is loss due to admittance mis-matching and the absorption of metal materials will reduce the coupling of electromagnetic waves into the metamaterial.
In this study, dielectric-metal-dielectric symmetrical film stack as a unit cell was used to design a multilayer equivalent medium with a subwavelength scale structure. The precise equivalent optical constant was calculated by the equivalent model with the current choice of branch. The propagating properties of the electromagnetic wave were depended on the optical constant. The decay of electromagnetic was affected by the imaginary part of the optical constant. Additionally, the equivalent admittance was considered and calculated to obtain the optimal parameters of a multilayer structure with the lowest reflectance.
Hyperbolic metamaterials can be applied in the various field because it has unique iso-frequency curve with high-k vector propagating. This method can precisely calculate the structure parameters, including the thickness of the film, incident angle, number of period of the unit cell, and refractive index of the substrate according to the required optical properties. This method can be applied to various materials and symmetrical film stacks for various wavelengths.
關鍵字(中) ★ 雙曲超穎材料
★ 對稱膜堆
關鍵字(英) ★ Hyperbolic metamaterials
★ symmetric film stacks
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xv
第一章:緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與本文架構 5
第二章:理論與背景 8
2-1 超穎材料 8
2-1-1 材料的分類 8
2-1-2 金屬的光學特性 11
2-2 金屬的電漿共振 14
2-2-1 體積電漿共振模態 14
2-2-2 表面電漿共振模態 15
2-2-3 金屬表面電漿共振的耦合激發 19
2-3 雙曲超穎材料 22
2-3-1 色散理論 23
2-3-2 負折射特性 25
2-3-3 雙曲超穎材料的實踐 26
2-3-4 雙曲超穎材料的應用 31
2-3-5-1 高解析成像 31
2-3-5-2 奈米蝕刻 33
2-3-5-3 近零相位變化的無繞射光束 35
2-3-5-4 非對稱穿透特性 36
2-3-5-1 熱輻射 37
2-4 導納軌跡法 38
2-4-1 等效表面導納 38
2-4-2 導納軌跡圖 39
第三章:步驟與計算方法 43
第四章:結果與討論 47
4-1 Type-I雙曲超穎材料 49
4-1-1 等頻率曲線 49
4-1-2 等效導納 53
4-2 Type-II雙曲超穎材料 62
4-2-1 金屬Al與介電質Al2O3 62
4-2-1-1 等頻率曲線 65
4-2-1-2 等效導納 66
4-2-2 金屬Ag與介電質SiO2 71
4-2-2-1 等頻率曲線 72
4-2-2-2 等效導納 74
第五章:結論與未來展望 79
5-1 結論 79
5-2 未來展望 80
參考文獻 81
參考文獻 [1] 張勝雄與戴朝義, "奈米電漿子波導元件於積體光學之應用", 物理雙月刊 三卷, 631-642 (2008).
[2] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials", Nature photonics 7, 948-957 (2013).
[3] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects", science 315, 1686-1686 (2007).
[4] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies", Nature communications 1, 1-5 (2010).
[5] D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media", Applied physics letters 84, 2244-2246 (2004).
[6] K. G. Balmain, A. Luttgen, and P. C. Kremer, "Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial", IEEE Antennas and Wireless Propagation Letters 1, 146-149 (2002).
[7] X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, "Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws", Nature Photonics 6, 450-454 (2012).
[8] M. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, "Controlling spontaneous emission with metamaterials", Optics letters 35, 1863-1865 (2010).
[9] Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Engineering photonic density of states using metamaterials", Applied physics B 100, 215-218 (2010).
[10] X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, "Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions", Applied Physics B 103, 553-558 (2011).
[11] K. V. Sreekanth, A. De Luca, and G. Strangi, "Experimental demonstration of surface and bulk plasmon polaritons in hypergratings", Scientific reports 3, 3291 (2013).
[12] T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. Bonner, and M. Noginov, "Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial", Applied Physics Letters 99, 151115 (2011).
[13] H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, "Topological transitions in metamaterials", Science 336, 205-209 (2012).
[14] S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, "Sub‐wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium", Laser & Photonics Reviews 7, 265-271 (2013).
[15] G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, "Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials", Proceedings of the National Academy of Sciences 109, 8834-8838 (2012).
[16] T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Sub-diffraction-limited interference photolithography with metamaterials", Optics Express 16, 13579-13584 (2008).
[17] G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, "Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography", Advanced Optical Materials 3, 1248-1256 (2015).
[18] X. Yang, B. Zeng, C. Wang, and X. Luo, "Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer", Optics express 17, 21560-21565 (2009).
[19] P. Zhu, H. Shi, and L. J. Guo, "SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography", Optics express 20, 12521-12529 (2012).
[20] F. Yang, X. Chen, E.-H. Cho, C. S. Lee, P. Jin, and L. J. Guo, "Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure", Applied Physics Express 8, 062004 (2015).
[21] L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, and X. Luo, "Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials", Materials Horizons 4, 290-296 (2017).
[22] X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, "Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial", ACS nano 11, 9863-9868 (2017).
[23] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab", Nano letters 12, 1443-1447 (2012).
[24] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters", Physical review letters 107, 045901 (2011).
[25] P. Huo, Y. Liang, S. Zhang, and T. Xu, "Hybrid metasurface for broadband enhancing optical absorption and Raman spectroscopy of graphene", Optical Materials Express 7, 3591-3597 (2017).
[26] H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers", Journal of Applied Physics 110, 014909 (2011).
[27] D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials", Nature nanotechnology 9, 48-53 (2014).
[28] T. Galfsky, H. Krishnamoorthy, W. Newman, E. Narimanov, Z. Jacob, and V. Menon, "Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction", Optica 2, 62-65 (2015).
[29] K. V. Sreekanth, K. H. Krishna, A. De Luca, and G. Strangi, "Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials", Scientific reports 4, 6340 (2014).
[30] P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, "Angular optical transparency induced by photonic topological transitions in metamaterials", Laser & Photonics Reviews 12, 1700309 (2018).
[31] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity", Physical review letters 84, 4184 (2000).
[32] T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).
[33] C. Wenshan and V. Shalaev, "Optical Metamaterials. Fundamentals and Applications", Springer. pp. xi 3, 9 (2010).
[34] S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and plasmonics: fundamentals, modelling, applications (Springer Science & Business Media, 2008).
[35] X. C. Tong, Functional metamaterials and metadevices (Springer, 2018).
[36] 邱國斌與蔡定平, "左手材料奈米平板的表面電漿量子簡介", 光學工程, 8-20 (2003).
[37] J. B. Pendry, "Negative refraction makes a perfect lens", Physical review letters 85, 3966 (2000).
[38] G. Viktor, "The electrodynamics of substances with simultaneously negative values of ε and μ", Soviet Physics Uspekhi 10, 509 (1968).
[39] 何符漢、蔡定平與劉威志, "什麼是左手系 (left-handed) 介質?", 物理雙月刊 二十四卷, 558-565 (2002).
[40] D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials", Physical review letters 85, 2933 (2000).
[41] S. Foteinopoulou, E. N. Economou, and C. Soukoulis, "Refraction in media with a negative refractive index", Physical review letters 90, 107402 (2003).
[42] J. Lv, M. Zhou, Q. Gu, X. Jiang, Y. Ying, and G. Si, "Metamaterial lensing devices", Molecules 24, 2460 (2019).
[43] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index", Science 305, 788-792 (2004).
[44] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index", nature 455, 376-379 (2008).
[45] R. S. Kshetrimayum, "A brief intro to metamaterials", IEEE Potentials 23, 44-46 (2004).
[46] G. V. Eleftheriades and K. G. Balmain, Negative-refraction metamaterials: fundamental principles and applications (John Wiley & Sons, 2005).
[47] K. Sakoda, Electromagnetic Metamaterials: Modern Insights Into Macroscopic Electromagnetic Fields (Springer Nature, 2019), Vol. 287.
[48] G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials", Optics express 15, 11536-11541 (2007).
[49] J. Yang, C. Sauvan, H. Liu, and P. Lalanne, "Theory of fishnet negative-index optical metamaterials", Physical review letters 107, 043903 (2011).
[50] C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial", Physical Review B 78, 155102 (2008).
[51] 李正中, 薄膜光學與鍍膜技術, 9th ed. (藝軒圖書, 2020).
[52] S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
[53] 邱國斌與蔡定平, "金屬表面電漿簡介", 物理雙月刊 二十八卷, 472-485 (2006).
[54] 吳民耀與劉威志, "表面電漿子理論與模擬", 物理雙月刊 二十八卷, 486-496 (2006).
[55] L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, "Hyperbolic metamaterials and their applications", Progress in Quantum Electronics 40, 1-40 (2015).
[56] W. L. Barnes, "Surface plasmon–polariton length scales: a route to sub-wavelength optics", Journal of optics A: pure and applied optics 8, S87 (2006).
[57] A. Sato, "Surface Plasmon Fluorescence Spectroscopy and Optical Waveguide Fluorescence Spectroscopy in Limit of Detection Studies", Max Planck Institute for Polymer Research, Johannes Gutenberg University of Mainz, Mainz. Master thesis (2006).
[58] H. Reather, "Surface plasmons on smooth and rough surfaces and on gratings", Springer tracts in modern physics 111, 1-3 (1988).
[59] E. Economou, "Surface plasmons in thin films", Physical review 182, 539 (1969).
[60] A. S. Rubio, Modified Au-based nanomaterials studied by surface plasmon resonance spectroscopy (Springer, 2015).
[61] F. F. Masouleh, N. Das, and H. R. Mashayekhi, "Assessment of amplifying effects of ridges spacing and height on nano-structured MSM photo-detectors", Optical and Quantum Electronics 47, 193-201 (2015).
[62] S. C. Sharma, "Surface plasmon Resonance Sensors: Fundamental Concepts, Selected Techniques, Materials and Applications", Adv. Sensors Reviews., 5.
[63] H. Lee, Sub-diffraction-limited optical imaging with superlens and hyperlens (2007), Vol. 68.
[64] D. Nikolova and A. Fisher, "Switching and propagation of magnetoplasmon polaritons in magnetic slot waveguides and cavities", Physical Review B 88, 125136 (2013).
[65] J. Homola, "Electromagnetic theory of surface plasmons", in Surface plasmon resonance based sensors (Springer, 2006), pp. 3-44.
[66] Y. Ma, "Surface Plasmon Polaritons Based Nanophotonic Devices and their Applications", (2015).
[67] J. Kontio, "Fabrication of Sub-Wavelength Photonic Structures by Nanoimprint Lithography", (2013).
[68] V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, "Hyperbolic metamaterials: new physics behind a classical problem", Optics express 21, 15048-15064 (2013).
[69] L. Lu, R. E. Simpson, and S. K. Valiyaveedu, "Active hyperbolic metamaterials: progress, materials and design", Journal of Optics 20, 103001 (2018).
[70] L. Novotny and B. Hecht, Principles of nano-optics (Cambridge university press, 2012).
[71] R. C. Rumpf, "Engineering the dispersion and anisotropy of periodic electromagnetic structures", in Solid State Physics (Elsevier, 2015), pp. 213-300.
[72] K. Sreekanth, M. ElKabbash, V. Caligiuri, R. Singh, A. De Luca, and G. Strangi, New Directions in Thin Film Nanophotonics (Springer, 2019), Vol. 1.
[73] S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, "From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers", Physical Review B 90, 155429 (2014).
[74] F. Peragut, L. Cerutti, A. Baranov, J. Hugonin, T. Taliercio, Y. De Wilde, and J. Greffet, "Hyperbolic metamaterials and surface plasmon polaritons", Optica 4, 1409-1415 (2017).
[75] S. Bang, S. So, and J. Rho, "Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials", Scientific reports 9, 1-7 (2019).
[76] Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, "Applications of Hyperbolic Metamaterial Substrates", Advances in OptoElectronics (2012).
[77] K. Sreekanth, T. Biaglow, and G. Strangi, "Directional spontaneous emission enhancement in hyperbolic metamaterials", Journal of Applied Physics 114, 134306 (2013).
[78] P. Huo, S. Zhang, Y. Liang, Y. Lu, and T. Xu, "Hyperbolic metamaterials and metasurfaces: fundamentals and applications", Advanced Optical Materials 7, 1801616 (2019).
[79] P. Shekhar, J. Atkinson, and Z. Jacob, "Hyperbolic metamaterials: fundamentals and applications", Nano convergence 1, 14 (2014).
[80] T. Dumelow, "Negative Refraction and Imaging from Natural Crystals with Hyperbolic Dispersion", in Solid State Physics (Elsevier, 2016), pp. 103-182.
[81] W. Cai and V. M. Shalaev, Optical metamaterials (Springer, 2010), Vol. 10.
[82] C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, "Negative refraction, gain and nonlinear effects in hyperbolic metamaterials", Optics express 21, 15037-15047 (2013).
[83] M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. Kildishev, and V. Shalaev, "Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials", Applied Physics Letters 102, 173114 (2013).
[84] A. Krokhin, P. Halevi, and J. Arriaga, "Long-wavelength limit (homogenization) for two-dimensional photonic crystals", Physical Review B 65, 115208 (2002).
[85] 張高德與欒丕綱, "光子晶體中的波傳播", 物理雙月刊 二十八卷, 844-850 (2006).
[86] I. Kolmychek, A. Pomozov, A. Leontiev, K. Napolskii, and T. Murzina, "Magneto-optical effects in hyperbolic metamaterials", Optics letters 43, 3917-3920 (2018).
[87] S. Molesky, C. J. Dewalt, and Z. Jacob, "High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics", Optics express 21, A96-A110 (2013).
[88] R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos, G. Palikaras, R. Fedosejevs, S. Pramanik, and Z. Jacob, "Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials", JOSA B 32, 2074-2080 (2015).
[89] Z. Liu, Plasmonics and Super-resolution Imaging (CRC Press, 2017).
[90] A. Diaspro and P. Bianchini, "Optical nanoscopy", La Rivista del Nuovo Cimento, 1-71 (2020).
[91] A. Fang, T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing", Physical Review B 79, 245127 (2009).
[92] W. Lu and S. Sridhar, "Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction", Physical Review B 77, 233101 (2008).
[93] M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, "Focus issue: hyperbolic metamaterials", Optics express 21, 14895-14897 (2013).
[94] C. Lv, W. Li, X. Jiang, and J. Cao, "Far-field super-resolution imaging with a planar hyperbolic metamaterial lens", EPL (Europhysics Letters) 105, 28003 (2014).
[95] W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo, "Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial", Optics express 16, 21142-21148 (2008).
[96] D. Lu and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging", Nature communications 3, 1-9 (2012).
[97] A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations", Physical Review B 74, 075103 (2006).
[98] Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit", Optics express 14, 8247-8256 (2006).
[99] H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, "Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons", Optics Express 25, 20511-20521 (2017).
[100] H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, and M. Pu, "Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons", Optical Materials Express 8, 199-209 (2018).
[101] X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance", Optics Express 12, 3055-3065 (2004).
[102] L. Sun, X. Yang, W. Wang, and J. Gao, "Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials", Journal of Optics 17, 035101 (2015).
[103] T. Xu and H. J. Lezec, "Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial", Nature communications 5, 1-7 (2014).
[104] Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, "Broadband super-Planckian thermal emission from hyperbolic metamaterials", Applied Physics Letters 101, 131106 (2012).
[105] C. T. Riley, J. S. Smalley, J. R. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, "Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles", Proceedings of the National Academy of Sciences 114, 1264-1268 (2017).
[106] X. Jiang, T. Wang, Q. Zhong, R. Yan, and X. Huang, "Ultrabroadband light absorption based on photonic topological transitions in hyperbolic metamaterials", Optics Express 28, 705-714 (2020).
[107] H. A. Macleod and C. Clark, "Optical coating design with the Essential Macleod", (2012).
[108] A. Macleod, "Fundamentals of optical coatings", SVC News Bulletin, 28-29 (2005).
[109] Y.-J. Jen, W.-C. Liu, T.-K. Chen, S.-w. Lin, and Y.-C. Jhang, "Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber", Scientific reports 7, 1-10 (2017).
[110] A. Macleod, "The admittance diagram", SVC Summer Bull, 28-36 (2008).
[111] A. Macleod, "Admittance and circle diagrams", SVC Bulletin, 22-26 (2008).
[112] A. Macleod, "Metal in the Admittance Diagram", SVC Fall Bull (2008).
[113] L. Cattin, M. Morsli, F. Dahou, S. Y. Abe, A. Khelil, and J. Bernède, "Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells", Thin Solid Films 518, 4560-4563 (2010).
[114] J. T. Azpiroz and A. E. Rosenbluth, "Impact of sub-wavelength electromagnetic diffraction in optical lithography for semiconductor chip manufacturing", in 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), (IEEE, 2013), 1-5.
[115] C. Guillén and J. Herrero, "ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes", Solar energy materials and solar cells 92, 938-941 (2008).
指導教授 李正中 郭倩丞(Cheng-Chung Lee Chien-Cheng Kuo) 審核日期 2020-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明