博碩士論文 105286005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.17.154.171
姓名 吳啟守(Chi-Shou Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 結合柱狀透鏡陣列之非成像車頭燈光型設計
(Nonimaging Optical Design of Vehicle Headlamp Using Cylindrical Lens Array)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究
★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測★ 發光二極體導光機構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文是以一維結構柱狀透鏡陣列(Cylindrical Lens Array, CLA)用於折射式以及反射式光學元件,進行高對比度光型之設計。探討適用於狀透鏡陣列專屬的光型設計,盡量讓開展後的光型亮點往上移動,以增加近燈光型的對比度。
結合柱狀透鏡陣列之折射式光學元件的設計,首先評估光源的光展量以及折射式光學元件的體積,找出適合用來塑造高對比光型的區塊。藉由分析折射式光學元件不同區塊所發出光束的發散角,並且考慮了柱狀透鏡陣列對於不同區塊所發出光線,在進行水平方向開展後,對於垂直方向上光型分布的影響。利用在垂直方向分布範圍較小的出光區域來設計截止線光型;而對於不利於塑造光型的區塊,為了能有效利用光源能量,本文將發散角較大的的光線導引至法規面上所規範的補光區。
結合柱狀透鏡陣列之反射式光學元件的設計,利用反光杯對於光型設計的自由度高,探討專屬於狀透鏡陣列的光型設計。由於柱狀透鏡對於準直光線的光型擴散響應具有線性位移不變,可用反光杯產生的光型與柱狀透鏡陣列的擴散函數的進行捲積計算輸出的光型,此結果和模擬光型的相關性高達99.5%以上。
摘要(英) In this thesis, a one-dimensional cylindrical lens array (Cylindrical Lens Array, CLA) is used for refractive and reflective optical elements to design high-contrast light patterns. Discuss the exclusive light pattern design applicable to the cylindrical lens array, and try to move the bright spot of the light pattern upward in order to increase the contrast of the near light pattern.
In the design of the refractive optical element combined with the cylindrical lens array, first, evaluate the etendue of the light source and the volume of the refractive optical element, and find out the suitable segment for shaping the high-contrast light pattern. By analyzing the divergence angle of the light beams emitted by different segments of the refractive optical element, and considering the influence of the light emitted by the cylindrical lens array on the different segments, after the horizontal direction is developed, the influence on the vertical light pattern distribution. The cut-off line light pattern is designed by using the light output area with a small vertical distribution range; and for the segment that is not conducive to shaping the light pattern, in order to effectively use the energy of the light source, this thesis guides the light with a large divergence angle to the other surface to provide the fully illuminance.
Combined with the design of the reflective optical element of the cylindrical lens array, the degree of freedom of the light pattern design is higher by using the reflector, and the light pattern design exclusive to the cylindrical lens array is analyzed. Since the cylindrical lens has a linear shift-invariant to the light pattern distribution response of the collimated light, the light type generated by the reflector can be convoluted with the distribution function of the cylindrical lens array to calculate the output light pattern. This result is related to the simulated light pattern. The NCC value is as high as 99.5%.
關鍵字(中) ★ 柱狀透鏡陣列
★ 光展量
★ 截止線光型
★ 擴散響應
★ 線性位移不變
★ 捲積
關鍵字(英) ★ cylindrical lens array
★ etendue
★ cut-off light pattern
★ distribution function
★ linear shift-invariant
★ convolution
論文目次 目錄
摘要 I
Abstract Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 ⅩⅥ
第一章 緒論 1
第二章 光展量 7
2-1 Etendue之定義 7
2-2 LED光展量與發光密度比較 11
2-3 光學設計元件之光展量分析 12
第三章 柱狀透鏡之光學特性分析 14
3-1 線性位移不變系統 14
3-2 柱狀透鏡曲率設計 18
3-2-1反射式架構之柱狀透鏡設計 21
3-2-2適用折射式之柱狀透鏡設計 26
3-2-3 發散角度之模擬與理論計算比較 32
3-2-4柱狀透鏡之散角分布與圓錐係數之關係 32
3-3 柱狀透鏡之線性位移及角度不變性分析 37
3-3-1 柱狀透鏡之線性系統及重疊原理驗證 39
3-3-2 不同光束寬度之照度分布 39
3-3-3 柱狀透鏡之位移及角度不變分析 48
3-4 非準直光線之捲積運算驗證 57
第四章 折射式光學元件設計 61
4-1 折射式光學元件準直化角度分析 61
4-2 折射式光學元件內側曲面之設計分析 66
4-3 折射光學元件之幾何機構設計 71
4-4 符合法規規範之折射式光學元件設計 82
4-5 折射式光學元件實驗結果 86
第五章 反射杯結合柱狀透鏡陣列之車燈光型設計 89
5-1 柱狀透鏡陣列對反射杯光型亮區的影響 89
5-2 捲積(Convolution)法計算光型與模擬光學之比較 95
第六章 結論 99
參考文獻 101
中英文名詞對照表 107




圖目錄
參考文獻 [1] D.A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M.O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal of Selected Topics in Quantum Electronics 8, 310–320 (2002).
[2] A. Zukauskas, M. S. S232hur, and R. Caska, Introduction to Solid-State Lighting. (John Wiley and Sons, New York, 2002).
[3] M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
[4] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3, 160-175 (2007).
[5] Cree Inc., “Cree LED Products,” https://www.cree-led.com/products/leds/.
[6] OSRAM, “White LEDs,” https://ams-osram.com/products/leds/white-leds.
[7] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[8] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417–418 (1997).
[9] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story. (Springer-Verlag, 2000).
[10] N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, M. Overington, “Characterizing white LEDs for general illumination applications,” Proc. SPIE 3938, 240-248 (2000).
[11] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting. (John Wiley & Sons, New York, 2002).
[12] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Lighting Technology,” IEEE J. Selected Topics in Quantum Electron. 8, 310-320 (2002).
[13] L. Venema, “The art of illumination,” Nature 450, 1175 (2007).
[14] S. Pimputkar, J. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180 (2009).
[15] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K.Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).
[16] R. Karlicek, C. C. Sun, G. Zissis, and R. Ma, Handbook of advanced lighting technology. (Springer, 2017).
[17] National Highway Traffic Safety Administration (NHTSA), “Traffic Safety Facts 2000: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimate System,” US Department of Transportation (2001).
[18] J. Sullivan and M. Flannagan, “Assessing the potential benefit of adaptive headlighting using crash databases,” University of Michigan Transportation Research Institute Report UMTRI-99-21 (1999).
[19] M. Hamm, “Adaptive lighting functions history and future – performance investigations and field test for user’s acceptance,” SAE Tech. Pap. 2002-01-0526 (2002).
[20] LEDinside, “Micro/Mini LED導入車用照明及顯示,整合驅動技術實現創新應用,” https://www.ledinside.com.tw/news/20201007-36951.html.
[21] LEDinside, “寡頭壟斷下,LED 企業如何在車燈市場拼出一條血路,” https://www.ledinside.com.tw/news/20210716-37500.html.
[22] C. C. Sun, C. S. Wu, Y. S. Lin, Y. J. Lin, C. Y. Hsieh, S. K. Lin, T. H. Yang, and Y. W. Yu, “Review of optical design for vehicle forward lighting based on white LEDs,” Opt. Eng. 60, 091501 (2021).
[23] C. C. Hung, Y. C. Fang, M. S. Huang, B. R. Hsueh, S. F. Wang, B. W. Wu, W. C. Lai, and Y. L. Chen, “Optical design of automotive headlight system incorporating digital micro mirror device,” Appl. Opt. 49, 4182-4187 (2010).
[24] M. S. Huang, C. C. Hung, Y. C. Fang, W.C. Lai, Y. L. Chen, “Optical design and optimization of light emitting diode automotive head light with digital micro mirror device light emitting diode,” Optik, 121, 944-952 (2010).
[25] Y. C. Lo, J.Y. Cai, C. W. Chen, and C. C. Sun, “A compact bike head lamp design based on a white LED operated at one watt,” Opt. Laser Technol. 44, 1172-1175 (2012).
[26] A. Ge, W. Wang, Z. Du, P. Qiu, J. Wang, J. Cai, and X. Song, “Design of an LED-based compound optical system for a driving beam system,” Appl. Opt. 52, 2688–2693 (2013).
[27] P. Qiu, A. Ge, J. Wang, J. Cai, L. Zhu, and Z. Du, “Design of an LED-based headlamp low-beam system using combined prisms,” Lighting Res. Technol. 47, 248-253 (2015).
[28] C. S. Wu, K. Y. Chen, X. H. Lee, S. K. Lin, C. C. Sun, J. Y. Cai, T. H. Yang, and Y. W. Yu, “Design of LED Spot Light System with Projection Distance Reaching 10 Km,” Crystals 9, 524 (2019).
[29] J. C. Minano, P. Benitez, J. C. Gonzalez, W. Falicoff, and H. J. Caulfield, “High Efficiency Non-Imaging Optics,” United States Patent, US6639733B2 (2003).
[30] J. Chen, K. Huang, and P. Lin, “Computer modeling of a fiber and-light-emitting-diode-based vehicle headlamp,” Opt. Eng. 49, 73002 (2010).
[31] A. M. Ge, W. Wang, Z. Q. Du, P. Qiu, J. W. Wang, and J. L. Cai, “High-energy-efficiency optical system for an LED-based headlamp architecture”, Appl. Opt. 52, 8318 (2013).
[32] S. C. Chu, P. Y. Chen, C. Y. Huang, and K. C. Chang, “Design of a high-efficiency LED low-beam headlamp using Oliker’s compound ellipsoidal reflector,” Appl. Opt. 59, 4872-4879 (2020).
[33] J. H. Lee, S. G. Han, and M. J. Jin, “Minimum achievable height of a single-module LED low-beam projection headlamp,” Appl. Opt. 60, 8-16 (2021).
[34] V. I. Oliker and O. von Tempski, “On the design of reflectors with prespecified distribution of virtual sources and intensities,” Inverse problems 14, 661–678 (1998).
[35] P. Benítez, R. Mohedano, and J. C. Miñano, “Design in 3D geometry with the simultaneous multiple surface design method of nonimaging optics,” Proc. SPIE 3781 (1999).
[36] W. Yan and W. Mao, “A multi-reflector headlamp that can produce a diagonal cut-off without a shield,” Proc. Inst. Mech. Eng. 214, 839–842 (2000).
[37] J. H. Park and J. Y. Sah, “Design of Reflector Optics with Smooth Surface for Automotive Lamps,” SAE Tech. Pap. 2001-01-0457 (2001).
[38] P. Benítez and J.C. Miñano, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[39] H. J. Park, D. K. Lee, J. M. Lee, K. W. Park, J. Y. Joo, and J. S. Kwak, “Design of LED Bicycle Headlamp with a Horizontally Wide Viewing Angle,” Curr. Opt. Photonics 1, 351-357 (2017).
[40] H. Ries and J. A. Muschaweck, “Tailoring freeform lenses for illuminations,” Proc. SPIE 4442, 43 –50 (2001).
[41] O. Dross, A. Cvetkovic, J. Chaves, P. Benitez, and J. C. Miñano, “LED Headlight Architecture that creates a High-Quality Beam Pattern independent of LED Shortcomings,” Proc. SPIE 5942, 126–135 (2005).
[42] P. Benitez, J. C. Minano, J. B. Flores, R. M. Arroyo, M. Dr Hernandez, and J. C. Chaves, “Three-Dimensional Simultaneous Multiple-Surface Method and Free-Form Illumination-Optics Designed Therefrom,” United States Patent, US7460985B2 (2004).
[43] L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46, 3716-3723, (2007).
[44] Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958-12966 (2008).
[45] L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,” Appl. Opt. 48, 5520–5527 (2009).
[46] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627-6634, (2009).
[47] F. Chen, K. Wang, Z. Qin, D. Wu, X. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926-20938 (2010).
[48] Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010).
[49] R. Wu, H. Li, Z. Zheng, and X. Liu, “Free-form lens arrays for off-axis illumination in an optical lithography system,” Appl. Opt. 50, 725–732 (2011).
[50] X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262-266 (2013).
[51] E. Aslanov, L. L. Doskolovich, and M. A. Moiseev, “Thin LED collimator with free-form lens array for illumination applications,” Appl. Opt. 51, 7200–7205 (2012).
[52] J. J. Chen, T. Y. Wang, K. L. Huang, T. S. Liu, M. D. Tsai, and C. T. Lin, “Freeform lens design for LED collimating illumination,” Opt. Express 20, 10984-10995 (2012).
[53] C. C. Hsieh, Y. H. Li, and C. C. Hung, “Modular design of the LED vehicle projector headlamp system,” Appl. Opt. 52, 5221-5229 (2013).
[54] X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED Street lighting using microlens arrays,” Opt. Express 21, 10612-10621 (2013).
[55] P. Ge, Y. Li, Z. Chen, and H. Wang, “LED high-beam headlamp based on free-form microlenses,” Appl. Opt. 53, 5570-5575 (2014).
[56] E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
[57] Y. C. Lo, J. Y. Cai, M. S. Tasi, Z. Y. Tasi, and C. C. Sun, “Side-illuminating LED luminaires with accurate projection in high uniformity and high optical utilization factor for large-area field illumination,” Opt. Express 22, A365-A375 (2014).
[58] C. C. Sun, X. H. Lee, I. Moreno, C. H. Lee, Y. W. Yu, T. H. Yang, and T. Y. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9, 1-13 (2017).
[59] A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Miñano, and R. Mohedano, “Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps,” Opt. Express 14, 13014–13020 (2006).
[60] K. Eichhorn, “LEDs in Automotive Lighting,” Proc. SPIE 6134, 613405 (2006).
[61] W. Pohlmann, T. Vieregge, and M. Rode, “High Performance LED Lamps for the Automobile: Needs and Opportunities,” Proc. SPIE 6797, 67970D (2007).
[62] P. Brick, T. Schmid, “Automotive headlamp concepts with low-beam and high-beam out of a single LED,” Proc. SPIE 8170, 817008 (2011).
[63] Y. C. Lo, C. C. Chen, H. Y. Chou, K. Y. Yang, and C. C. Sun, “A design of a bike headlamp based on a power white-LED,” Opt. Eng. 50, 080503 (2011).
[64] Y. C. Lo, J. Y. Cai, C. W. Chen, and C. C. Sun, “A compact LED-based bike head lamp designed for meeting K-mark regulation,” Opt. Laser Technol. 44, 1172-1175 (2012).
[65] UNECE, “Addenda to the 1958 Agreement (Regulations 101-120),” http://www.unece.org/trans/main/wp29/wp29regs101-120.html.
[66] ISO 6742-1:2015, “Estonian Centre for Standardisation 2015,” https://www.evs.ee/products/iso-6742-1-2015.
[67] Verkehrsblatt Heft, “TA 23 Scheinwerfer für Fahrräder,” http://www.enhydralutris.de/Fahrrad/Beleuchtung/node403.html.
[68] K. Eichhorn, “LEDs in automotive lighting,” Proceedings of the SPIE 6134, 613405 (2006).
[69] F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source target maps,” Optics Express 18: 5295–5304 (2010).
[70] J. C. Minano, W. Falicoff, P. Benitez, W. A. Parkyn, J. P. Chaves, and Y. Sun, “Asymmetric TIR lenses producing off-axis beams,” US Patent No. 6,924,943, 2005.
[70] J.Y. Cai, Y.C. Lo, S.T. Feng, and C.C. Sun, “Design of a highly-efficient LED-based bicycle head lamp with additional ground illumination,” Lighting Res. Technol. 0, 1-7 (2014).
[71] R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics. (Wiley, 2013).
[72] H. Rehn and J. Muschaweck, “Étendue Estimation for Non-Trivial Geometry,” DGaO Proceedings (2020).
[73] R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics. (Elsevier Academic Press, 2005).
[74] J. Chaves, Introduction to Nonimaging Optics, 2nd eds. (CRC Press,2016).
[75] A. V. Arecchi, T. Messadi, and R. J. Koshel, Field Guide to Illumination. (SPIE Press, 2007).
[76] G. Brooker, Modern Classical Optics. (Oxford University Press, 2003).
[77] V. N. Mahajan, Optical imaging and aberrations Part I: Ray Geometrical Optics. (SPIE Press, Washington, 1998).
[78] H. J. Lin, C. S. Wu, C. C. Sun, X. H. Lee, T. H. Yang, S. K. Lin, Y. J. Lin, and Y. W. Yu, “Design of K-mark Bike Headlamp Using White LED with Separate Die Bonding,” Crystals 9, 659 (2019).
[79] C. C. Sun, C. S. Wu, C. Y. Hsieh, Y. H. Lee, S. K. Lin, T. X. Lee, T. H. Yang, and Y. W. Yu, “Single reflector design for integrated low/high beam meeting multiple regulations with light field management,” Opt. Express 29, 18865-18875 (2021).
[80] J. D. Gaskill, Linear System, Fourier Transform, and Optics. (John Wiley & Sons, New York, 1978).
[81] Breault Research Organization, “ASAP,” http://www.breault.com/index.php.
[82] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[83] C. C. Sun and T. X. Lee, Optical Design for LED Solid State Lighting - A guide. (IOP Publishing, United Kingdom, 2022).
[84] Supernova, “MINI 2 PRO MonkeyLink Version,” https://supernova-lights.com/en-eu/pages/questionnaire.
[85] M. S. Tsai, C. C. Sun, T. H. Yang, C. S. Wu, S. K. Lin, and X. H. Lee, “Robust optical design for high-contrast cut-off line in vehicle forward lighting,” OSA Continuum 2, 1080-1088 (2019).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明