博碩士論文 105323036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.223.170.223
姓名 張吉揚(Chang-ji-yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
(The investigation of the dry transferring large area graphene for high cleanliness by electrochemical assisted delamination)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究
★ 有效披覆黑磷烯的穩定性之研究★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction
★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究
★ 石墨烯之複合電極於全固態纖維式微型超電容的研究★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究
★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯(Graphene)為一種新穎的二維材料,相較於其他材料,具有良好的機械性質、導電性、光學特性等,像是其機械強度為1100 GPa、熱傳導為5300 Wm-1k-1、光穿透率大於97 %以及載子傳輸速率為200,000 cm2V-1s-1等。目前製備高品質石墨烯的主流方法為使用化學氣相沉積法 (Chemical Vapor Deposition, CVD)於銅基板成長,再進一步將石墨烯從銅基板轉印至目標基板,如何有效率地轉印成長後的石墨烯至目標基板是重要課題之。目前轉印主要面臨的難題為如何大面積轉印,以及高分子或金屬離子殘留的問題。
本研究探討石墨烯之大面積轉印,以及能達到高潔淨且高完整性的石墨烯於目標基板上。首先,討論捲對捲乾式轉印(Roll-to-roll dry transfer)分別搭配直接剝離及加熱剝離兩種不同方式,利用加熱剝離方式可轉印大面積石墨烯,並且同時具備高達92 %的表面完整性;另一方面,探討使用松香(Rosin)取代主流的PMMA,將rosin當作轉印緩衝層,於搭配捲對捲乾式轉印,可使石墨烯表面潔淨度高達97 %。
本研究更進一步透過電化學輔助剝離(Electrochemical delamination)結合捲對捲乾式轉印,藉由減少銅基板蝕刻步驟,達到提高轉印後的石墨烯潔淨度,並且,剝離下的銅箔能重複成長,重新利用銅箔成長石墨烯可大幅減少其成本。
電化學輔助剝離中,使用PMMA當作轉印緩衝層的效果優於使用rosin,可獲得表面潔淨性高達99 %的石墨烯。我們進一步探討其高潔淨的原因。得到鈉離子藉由插層的方式進入PMMA及石墨烯層之間,間接弱化了PMMA與石墨烯間的附著力,在洗淨步驟更能從石墨烯上洗掉PMMA,達到高潔淨的結果。
摘要(英) Graphene is a novel two-dimensional material, which has excellent properties in mechanical, optical fields, including high mechanical strength (~1100 GPa), thermal conductivity (5300 Wm-1k-1), transparency (>97%) and charge carrier mobility (200,000 cm2V-1s-1). One of the current methods for preparing graphene is that growing graphene on a copper foil by using chemical vapor deposition (CVD) and transferring graphene from the copper to a target substrate. Therefore, how to efficiently transfer graphene to the target substrate is one of the important issues. At present, transferring high-quality graphene with large area as well as without polymer or metal ion residues is the main problems to solve.
In this study, in order to achieve a large area of high-quality graphene transferring, as well as high cleanliness and integrity of graphene to the substrate, several methods were studied to optimize the transfer process of graphene. First, we discussed the roll-to-roll dry transfer through different release methods: (1) direct exfoliation (2) heated exfoliation. As much as 92 % of surface integrity can be obtained by the method of heat exfoliation in transfer graphene. Then, we discussed using rosin to replace PMMA as a buffer layer in roll-to-roll dry transfer, and the high surface cleanliness of 97% with the large-area graphene could be obtained.
In addition, electrochemical delamination combined with the roll-to-roll dry transfer was further carried out for reducing the etching steps of the copper substrate to improve the cleanliness of transferred graphene. Moreover, after tearing the copper foil with the top of graphene, the copper foil could be used repeatedly to grow graphene, and the cost of using copper foil to grow graphene could be greatly reduced. This method of graphene transferring will greatly reduce the cost of copper foil.
In electrochemical assisted delamination, using PMMA could obtain graphene with a surface cleanliness of up to 99%. We studied the mechanism of this transferring process with the high cleanliness. The intercalation of Na ions could weaken the adhesion between graphene and PMMA layer by electrochemical assisted delamination, as the result, PMMA on top of graphene could be easily washed away, which results in the high cleanliness of transferred graphene.
關鍵字(中) ★ 石墨烯
★ 轉印
★ 大面積
★ 捲對捲
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 文獻回顧與研究背景 4
2-1 濕式轉印 4
2-2 乾式轉印 6
2-3 電化學插層剝離 12
2-4 研究動機 13
第三章 實驗架構與流程 14
3-1 實驗用品與儀器 14
3-1-1 實驗用品 14
3-1-2 實驗儀器 14
3-2 實驗架構 15
3-3 實驗流程 16
3-3-1 濕式蝕刻轉印 (Wet etching transfer) 16
3-3-2 捲對捲乾式轉印 (Roll-to-roll dry transfer methods) 16
3-3-3 捲對捲結合電化學輔助剝離 (Roll-to-roll electrochemical delamination) 18
3-3-4 材料的分析 20
第四章 結果與討論 21
4-1 實驗參數討論 21
4-1-1 定義表面完整性(Surface integrity)及表面潔淨度(Surface cleanliness ) 21
4-1-2 捲對捲乾式轉印參數討論 22
4-1-3 松香的參數優化 24
4-2 捲對捲乾轉討論 29
4-2-1 直接剝離(Direct exfoliation)的方式轉印結果討論 29
4-2-2 使用PMMA/松香複合層當作轉印緩衝層討論 30
4-2-3 比較不同的緩衝層其使用直接剝離方式轉印的比較 32
4-2-4 加熱剝離(Heated exfoliation)的方式轉印結果討論 33
4-2-5 比較松香與PMMA捲對捲乾式轉印的討論 36
4-3 捲對捲結合電化學輔助剝離討論 38
4-3-1 比較不同方式氧化銅箔討論 38
4-3-2 比較不同的捲對捲結合電化學輔助剝離實驗條件 40
4-3-3 使用松香於捲對捲結合電化學輔助剝離中 42
4-4 潔淨度的討論 44
4-4-1 比較不同的轉印的潔淨度 44
4-4-2 捲對捲結合電化學輔助剝離潔淨性的討論 47
4-5 銅箔的再成長討論 50
第五章 結論 52
第六章 未來工作 53
參考文獻 54
參考文獻 1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
2. Antonio Castro, N.; Francisco, G.; Nuno Miguel, P., Drawing conclusions from graphene. Physics World 2006, 19 (11), 33.
3. Shin, K. Y.; Hong, J. Y.; Jang, J., Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chemical Communications 2011, 47 (30), 8527-8529.
4. Ju, M. J.; Kim, J. C.; Choi, H. J.; Choi, I. T.; Kim, S. G.; Lim, K.; Ko, J.; Lee, J. J.; Jeon, I. Y.; Baek, J. B.; Kim, H. K., N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. Acs Nano 2013, 7 (6), 5243-5250.
5. Schwierz, F., Graphene transistors. Nature Nanotechnology 2010, 5 (7), 487-496.
6. Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22 (10), 1027-1036.
7. Lin, Y.; Han, X.; Campbell, C. J.; Kim, J.-W.; Zhao, B.; Luo, W.; Dai, J.; Hu, L.; Connell, J. W., Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. Advanced Functional Materials 2015, 25 (19), 2920-2927.
8. Tetlow, H.; Posthuma de Boer, J.; Ford, I. J.; Vvedensky, D. D.; Coraux, J.; Kantorovich, L., Growth of epitaxial graphene: Theory and experiment. Physics Reports 2014, 542 (3), 195-295.
9. Muñoz, R.; Gómez-Aleixandre, C., Review of CVD Synthesis of Graphene. Chemical Vapor Deposition 2013, 19 (10-11-12), 297-322.
10. Ciesielski, A.; Samorì, P., Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews 2014, 43 (1), 381-398.
11. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
12. Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A. N.; Li, L.-J., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5 (3), 2332-2339.
13. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 2008, 93 (11), 113103.
14. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
15. Wang, G.; Zhang, M.; Zhu, Y.; Ding, G.; Jiang, D.; Guo, Q.; Liu, S.; Xie, X.; Chu, P. K.; Di, Z.; Wang, X., Direct Growth of Graphene Film on Germanium Substrate. Scientific Reports 2013, 3, 2465.
16. Laser direct growth of graphene on silicon substrate. Applied Physics Letters 2012, 100 (2), 023110.
17. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters 2009, 9 (12), 4359-4363.
18. Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications 2017, 8, 9.
19. Hong, J. Y.; Shin, Y. C.; Zubair, A.; Mao, Y. W.; Palacios, T.; Dresselhaus, M. S.; Kim, S. H.; Kong, J., A Rational Strategy for Graphene Transfer on Substrates with Rough Features. Advanced Materials 2016, 28 (12), 2382-2392.
20. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010, 5 (8), 574-578.
21. Yoon, T.; Shin, W. C.; Kim, T. Y.; Mun, J. H.; Kim, T.-S.; Cho, B. J., Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process. Nano Letters 2012, 12 (3), 1448-1452.
22. Yang, S. Y.; Oh, J. G.; Jung, D. Y.; Choi, H.; Yu, C. H.; Shin, J.; Choi, C.-G.; Cho, B. J.; Choi, S.-Y., Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small 2015, 11 (2), 175-181.
23. Kim, J.; Park, H.; Hannon, J. B.; Bedell, S. W.; Fogel, K.; Sadana, D. K.; Dimitrakopoulos, C., Layer-Resolved Graphene Transfer via Engineered Strain Layers. Science 2013, 342 (6160), 833-836.
24. Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.; Yang, C.-W.; Choi, B. L.; Hwang, S.-W.; Whang, D., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science 2014, 344 (6181), 286-289.
25. Kang, J.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.; Kim, M. K.; Choi, J.-B., Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano 2012, 6 (6), 5360-5365.
26. Fechine, G. J. M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E. S.; Bof de Oliveira, R. V.; Hu, X.; Yarovsky, I.; Castro Neto, A. H.; Özyilmaz, B., Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224-231.
27. Lock, E. H.; Baraket, M.; Laskoski, M.; Mulvaney, S. P.; Lee, W. K.; Sheehan, P. E.; Hines, D. R.; Robinson, J. T.; Tosado, J.; Fuhrer, M. S.; Hernández, S. C.; Walton, S. G., High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Letters 2012, 12 (1), 102-107.
28. Na, S. R.; Wang, X. H.; Piner, R. D.; Huang, R.; Willson, C. G.; Liechti, K. M., Cracking of Polycrystalline Graphene on Copper under Tension. Acs Nano 2016, 10 (10), 9616-9625.
29. Bongkyun, J.; Chang-Hyun, K.; Seung Tae, C.; Kyung-Shik, K.; Kwang-Seop, K.; Hak-Joo, L.; Seungmin, C.; Jong-Hyun, A.; Jae-Hyun, K., Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials 2017, 4 (2), 024002.
30. Wang, X.; Tao, L.; Hao, Y.; Liu, Z.; Chou, H.; Kholmanov, I.; Chen, S.; Tan, C.; Jayant, N.; Yu, Q.; Akinwande, D.; Ruoff, R. S., Direct Delamination of Graphene for High-Performance Plastic Electronics. Small 2014, 10 (4), 694-698.
31. Marta, B.; Leordean, C.; Istvan, T.; Botiz, I.; Astilean, S., Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Applied Surface Science 2016, 363, 613-618.
32. Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5 (12), 9927-9933.
33. Cherian, C. T.; Giustiniano, F.; Martin-Fernandez, I.; Andersen, H.; Balakrishnan, J.; Özyilmaz, B., ‘Bubble-Free’ Electrochemical Delamination of CVD Graphene Films. Small 2015, 11 (2), 189-194.
34. Hempel, M.; Lu, A. Y.; Hui, F.; Kpulun, T.; Lanza, M.; Harris, G.; Palacios, T.; Kong, J., Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale 2018, 10 (12), 5522-5531.
指導教授 蘇清源(Su-Ching-Yuan) 審核日期 2018-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明