博碩士論文 105323054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:44.201.97.138
姓名 莊嘉智(Chia-Chih Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
(Fabrication of Carbon Nanofiber for Supercapacitor Electrodes by Laser Carbonization of Electrospun Carbon Nanofiber)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以碳為原料作為電極的超級電容,不僅成本低廉,也能應用在更廣的溫度範圍。本研究先以靜電紡絲技術製備出奈米纖維膜,再運用雷射將奈米纖維膜快速碳化,形成碳奈米纖維膜作為雙電層電容的電極,運用靜電紡絲製備出來的纖維具有極佳的連續性,所製作出來的碳奈米纖維能有較好的導電性,降低電容的內電阻。碳奈米纖維上的孔洞特性,用在雙電層電容的電極是很好的選擇,使用雷射快速加熱增加孔洞量,也能用來提升電容。
在雷射碳化方面還有很多優點,相較於傳統以管式爐碳化,其加熱與降溫常需要數小時,而使用雷射碳化,可將製程時間減少至數分鐘、甚至數十秒。雷射可以使用更少的能量將碳化溫度提升到更高,增加能量使用效率,更高的碳化溫度也能有更好的石墨化程度,使碳奈米纖維電極的導電度更好。因此,對於應用在雙電層電容的碳奈米纖維電極,使用靜電紡絲加雷射碳化的方式,不僅提升生產效率、節省成本又能有效能的提升。
結果顯示,本研究所製作的碳奈米纖維,纖維直徑約300奈米,在未經任何活化過程下,比表面積33.63 m²/g,在使用3M KOH當電解質時,用三電極測試最高達到21.66 F/g的比電容值,是使用傳統管式爐加熱所獲碳奈米纖維電極的數倍。
摘要(英) Using carbon as an electrode, the supercapacitor not only has the advantage of reducing material costs, but also is applicable to a wider temperature range. In this study, the carbon-based nanofiber membrane electrode, for an electric double layer capacitor, was fabricated by the techniques of electrospinning and a follow-up laser carbonization. The fibers prepared by electrospinning take the advantage of excellent fiber continuity that leads to better electrode conductivity and lower internal resistance on the resulting supercapacitor. The characteristics of cavities and holes on the laser-carbonized nanofibers are beneficial for the electrodes of electric double layer capacitors. The rapid heating rate of the laser increases the number of holes in the nanofibers, thereby successfully improving the capacitance effect.
Compared with traditional tube furnace heating for carbonization, the heating and cooling cycles often take several hours, laser carbonization can reduce the processing time to several minutes or even tens of seconds. The laser can use less energy to raise the carbonization temperature to a higher level, increasing the energy use efficiency. A higher carbonization temperature also leads to a better degree of graphitization, which makes the carbon nanofiber electrode be more conductive. Therefore, the carbon nanofiber electrodes used in electric double-layer capacitors, that are obtained by electrospinning and laser carbonization, can not only improve production efficiency, but also effectively improves electrode performance.
Results show that the diameter of the carbon nanofibers fabricated in this study is about 300 nm. Without any activation process, the specific surface area can reach 33.63 m²/g. When using 3M KOH as the electrolyte and characterized using a three-electrode tester, the specific capacitance is measured to be 21.66 F/g that is several times higher than the carbon nanofiber electrodes obtained by heating in a traditional tube furnace.
關鍵字(中) ★ 靜電紡絲
★ 雷射碳化
★ 超級電容
★ 碳奈米纖維
關鍵字(英) ★ electrospinning
★ laser carbonization
★ super capacitors
★ carbon nanofibers
論文目次 摘要 i
abstract ii
目錄 iii
圖目錄 v
表目錄 viii
Chapter 1 緒論 1
1-1 前言 1
1-2 研究背景、目的與方法 3
Chapter 2 文獻回顧與基礎理論 5
2-1 超級電容器簡介及原理 5
2-1-1 電雙層電容 5
2-1-2 擬電容 6
2-1-3 碳系電極材料 9
2-2 靜電紡絲 14
2-2-1 靜電紡絲原理 14
2-3 碳纖維製備 15
2-3-1 穩定化 16
2-3-2 碳化 16
2-4 雷射碳化 19
2-4-1 雷射碳化碳纖維 19
2-4-2 雷射碳化奈米碳纖維布 21
2-5 三氧化鉬 24
2-6 傳承與創新 25
Chapter 3 實驗方法 26
3-1 實驗流程 26
3-2 實驗步驟 28
3-2-1 靜電紡絲溶液配製 28
3-2-2 靜電紡絲 28
3-2-3 穩定化 29
3-2-4 雷射碳化 29
3-3 實驗用品 31
3-4 材料檢測儀器 33
3-4-1 場發掃描式電子顯微鏡 33
3-4-2 電化學分析儀 33
3-4-3 拉曼光譜儀 33
3-4-4 氮氣吸附孔隙儀 33
3-4-5 傅立葉轉換紅外光譜 34
Chapter 4 結果與討論 35
4-1 靜電紡絲溶液製備結果 35
4-2 靜電紡絲 39
4-3 穩定化過程 40
4-4 雷射碳化 42
4-4-1 氮氣等溫吸脫附測試 46
4-4-2 拉曼光譜檢測 51
4-5 電化學測試 53
Chapter 5 結論與未來工作 58
5-1 結論 58
5-2 未來工作 59
參考文獻 60
碩士論文口試教授問題集 62
參考文獻 [1] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," in Nanoscience and technology: a collection of reviews from Nature journals: World Scientific, 2010, pp. 320-329.
[2] D. P. Dubal, O. Ayyad, V. Ruiz, and P. J. C. S. R. Gomez-Romero, "Hybrid energy storage: the merging of battery and supercapacitor chemistries," vol. 44, no. 7, pp. 1777-1790, 2015.
[3] L. L. Zhang and X. J. C. S. R. Zhao, "Carbon-based materials as supercapacitor electrodes," vol. 38, no. 9, pp. 2520-2531, 2009.
[4] K. Tian, L. Wei, X. Zhang, Y. Jin, and X. J. M. t. e. Guo, "Membranes of carbon nanofibers with embedded MoO3 nanoparticles showing superior cycling performance for all-solid-state flexible supercapacitors," vol. 6, pp. 27-35, 2017.
[5] T. Lin et al., "Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage," vol. 350, no. 6267, pp. 1508-1513, 2015.
[6] D. Qu and H. J. J. o. P. S. Shi, "Studies of activated carbons used in double-layer capacitors," vol. 74, no. 1, pp. 99-107, 1998.
[7] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. J. N. l. Jang, "Graphene-based supercapacitor with an ultrahigh energy density," vol. 10, no. 12, pp. 4863-4868, 2010.
[8] J. Chen, W. Li, D. Wang, S. Yang, J. Wen, and Z. J. C. Ren, "Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors," vol. 40, no. 8, pp. 1193-1197, 2002.
[9] T. Kshetri, T. D. Thanh, S. B. Singh, N. H. Kim, and J. H. J. C. E. J. Lee, "Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor," vol. 345, pp. 39-47, 2018.
[10] Y. Liu, Z. Zeng, B. Bloom, D. H. Waldeck, and J. J. S. Wei, "Stable Low‐Current Electrodeposition of α‐MnO2 on Superaligned Electrospun Carbon Nanofibers for High‐Performance Energy Storage," vol. 14, no. 3, p. 1703237, 2018.
[11] D. Li and Y. J. A. m. Xia, "Electrospinning of nanofibers: reinventing the wheel?," vol. 16, no. 14, pp. 1151-1170, 2004.
[12] R. J. T. R. J. Houtz, "" Orlon" Acrylic Fiber: Chemistry and Properties," vol. 20, no. 11, pp. 786-801, 1950.
[13] J. J. J. o. P. S. Schurz, "Discoloration effects in acrylonitrile polymers," vol. 28, no. 117, pp. 438-439, 1958.
[14] A. Standage and R. J. E. P. J. Matkowsky, "Thermal oxidation of polyacrylonitrile," vol. 7, no. 7, pp. 775-783, 1971.
[15] A. J. E. S. P. B. V. Konkin, Handbook of Composites., "Properties of carbon fibres and fields of their application," vol. 1, pp. 241-273, 1985.
[16] H. Friedlander, L. Peebles Jr, J. Brandrup, and J. J. M. Kirby, "On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile," vol. 1, no. 1, pp. 79-86, 1968.
[17] A. Clarke and J. J. N. Bailey, "Oxidation of acrylic fibres for carbon fibre formation," vol. 243, no. 5403, pp. 146-150, 1973.
[18] J. Bailey and A. J. C. i. B. Clarke, "Carbon fibres," vol. 6, no. 11, pp. 484-&, 1970.
[19] P. Goodhew, A. Clarke, J. J. M. S. Bailey, and Engineering, "A review of the fabrication and properties of carbon fibres," vol. 17, no. 1, pp. 3-30, 1975.
[20] M. S. A. Rahaman, A. F. Ismail, A. J. P. d. Mustafa, and Stability, "A review of heat treatment on polyacrylonitrile fiber," vol. 92, no. 8, pp. 1421-1432, 2007.
[21] X. J. M. Huang, "Fabrication and properties of carbon fibers," vol. 2, no. 4, pp. 2369-2403, 2009.
[22] P. Lott, J. Stollenwerk, and K. J. J. o. L. A. Wissenbach, "Laser-based production of carbon fibers," vol. 27, no. S2, p. S29106, 2015.
[23] D. Go et al., "Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity," vol. 8, no. 42, pp. 28412-28417, 2016.
[24] D. Go et al., "Electrochemical characterization of laser‐carbonized polyacrylonitrile nanofiber nonwovens," vol. 135, no. 25, p. 46398, 2018.
[25] B. Mendoza-Sánchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, and P. S. J. E. A. Grant, "An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte," vol. 91, pp. 253-260, 2013.
[26] T. Brezesinski, J. Wang, S. H. Tolbert, and B. J. N. m. Dunn, "Ordered mesoporous α-MoO 3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors," vol. 9, no. 2, pp. 146-151, 2010.
指導教授 何正榮 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明