博碩士論文 105323058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.94.129.211
姓名 陳寅立(Yin-Li Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 蚶線形滑轉板轉子引擎設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 轉子引擎普遍具有體積小、重量輕、馬力大的優勢,能夠與電動車結合,作為電力不足時的備用動力來源,增加車輛行駛里程,其中最為人所知的是日本馬自達汽車公司所研發之轉子引擎。本論文目的,在開發創新之蚶線形滑轉板轉子引擎,它具有前述之優勢且結構更為簡單,並配合3D電腦輔助設計軟體建立引擎之立體模型。此引擎圍繞著蚶線之特性進行設計,其主要組成包含壓縮部與動力部,各別設有進氣口與排氣口,壓縮部包含蚶線形汽缸、轉子及滑轉板,轉子兩端延伸出輸出軸以輸出動力,滑轉板將蚶線形汽缸分成兩個獨立空間,隨著轉子與滑轉板的轉動,兩空間改變其體積以進行壓縮或膨脹行程。動力部與壓縮部之內部結構基本相同,只有進氣口與排氣口的大小與位置設置不同以及動力部是呈180°鏡向於壓縮部來設置,其中壓縮部轉子與動力部轉子存在著15°的相位差。透過壓縮部轉子與滑轉板轉動將汽缸內之燃氣壓縮至動力部,當動力部進氣口關閉時點火引燃燃氣,產生之高壓氣體推動動力部滑轉板,帶動動力部轉子轉動並由輸出軸輸出動力,壓縮部轉子與動力部轉子乃呈共軸同步運轉。而此引擎之汽缸,被分割為兩個獨立空間同時運作,因此每360°就會有兩次的爆炸動力行程,優於活塞引擎720°才有一次爆炸動力行程。最後,進行CNC加工製作壓縮部金屬冷模型,量測其排氣流量、壓縮壓力以及摩擦損失,驗證此引擎之設計概念與壓縮效能,並以此冷模型為基礎構思出蚶線形滑轉板轉子引擎之完整結構,以進行壓縮部與動力部結合之製作,其中也包含化油器、啟動馬達、齒輪箱、配重飛輪、火星塞引燃系統和冷卻流道設計製作等。
摘要(英) Generally, the advantages of the rotary engine are its compact size and light weight with high horsepower. The rotary engine can be used as a backup power source for the electric vehicle to allow extra mileages when the car battery is low and needs to be charged. The purpose of this thesis is to develop an innovative limacon (蚶線) slide rotating plate rotary engine, which not only has the aforementioned advantages but also has simpler design and structure than the conventional Wankel rotary engine. We apply SolidWorks (a 3D computer aided software) to design the limacon slide rotating plate rotary engine that mainly includes the compression part and the power part, each having an intake port and an exhaust port. Both parts consist of a limacon cylinder, a rotor and a slide rotating plate, but they have 180° mirror inversion. The shafts extend from both sides of the rotor to output power and the slide rotating plate divides the limacon cylinder into two separate compartments. With the rotation of the rotor and the slide rotating plate, two spaces change their volume for the compression stroke or the expansion stroke. The design of the power part and the compression part is basically the same, except that the area and the position of the intake port and the exhaust port are different. The power part is set by 180° mirror with respect to the compression part, in which there is a 15° phase difference between the compression rotor and the power rotor. The fuel/air mixture is injected into the compression cylinder, which is compressed to the power part through the rotation of the compression rotor and the slide rotating plate. The mixture is ignited when the intake port of the power part is closed. The high pressure burned gases drive the slide rotating plate, rotate the rotor of the power part, and output power by the shaft. Note that the compression rotor coaxially rotates with the power rotor synchronously. Because the cylinder of this engine is splited into two separate spaces that operate at the same time, there are two explosive power strokes per 360°, which is better than the piston engine(one explosive power stroke per 720°). Finally, the metal model of the compression part is manufactured by CNC processing. The exhausted flow rate, the compression pressure and the friction loss are measured to verify the design concept and the compression efficiency of the engine. Based on this compression part model, a complete construction of the limacon slide rotating plate rotary engine including the power part is designed and manufactured, which also combines the carburetor, the starter motor, the weight-balanced flywheels, the spark plug ignition system, and the cooling flow passage design.
關鍵字(中) ★ 蚶線
★ 滑轉板
★ 轉子引擎
★ 壓縮部
★ 動力部
關鍵字(英) ★ limacon
★ slide rotating plate
★ rotary engine
★ compression part
★ power part
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
符號說明 XII
第一章 前言 1
1.1 研究動機 1
1.2 探討之問題 2
1.3 研究方法 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1 往復式活塞引擎 5
2.2 Wankel轉子引擎 5
2.2.1 Wankel轉子引擎之簡介 5
2.2.2 Wankel轉子引擎之優缺點 6
2.3轉子引擎類型 7
2.3.1 Wankel引擎之改良 7
2.3.2不同形狀之轉子引擎 9
第三章 蚶線形滑轉板轉子引擎 17
3.1蚶線數學模型 17
3.2蚶線形滑轉板轉子引擎之初步設計 19
3.2.1基礎結構 19
3.2.2零件與組合圖 21
3.2.3作動原理 22
3.3模型之修正與細部設計 24
3.3.1滑轉板與轉子 25
3.3.2汽缸腔體外殼 27
3.3.3氣體洩漏途徑 27
3.3.4各行程之角度 28
3.3.5工作腔室容積變化之量測 30
第四章 結果與討論 53
4.1修正設計之金屬模型加工 53
4.2 金屬冷模型之性能量測與分析 54
4.2.1排氣流量之量測與分析 54
4.2.2壓縮壓力之量測與分析 55
4.2.3 摩擦損失之量測與分析 56
第五章 結論與未來工作 67
5.1 結論 67
5.2 未來工作 68
參考文獻 71
參考文獻 參考文獻
[1] 經濟部能源局,中華民國106年能源統計手冊,2017年。
[2] 經濟部能源局,106年度我國燃料燃燒CO2排放統計與分析,2018年。
[3] Kenichi Yamamoto, Rotary Engine, 1981.
[4] https://en.wikipedia.org/wiki/Wankel_engine.
[5] 馮俊宇,「UAV Wankel燃油噴射式引擎之設計與製作」,國立中興大學機械工程研究所,碩士論文,2008年。
[6] M. Ohkubo, S. Tashima, R. Shimizu, S. Fuse, H. Ebino, “Developed technologies of the new rotary engine (RENESIS) ”, SAE paper no. 2004-01-1790, 2004.
[7] C. M. Joyce, “Liquid magnetic seals in wankel-type rotary engines”, US Patent US20120306157A1, Dec. 6, 2012.
[8] R. Balendra, J. L. Henshall, T. S. Thuraisingham, R. J. J. Walker, “Ceramic rotary engines”, US Patent US5711268, Aug. 21, 2014.
[9] D. B. Wittry, “Rotary engine with varlable compression ratio”, US Patent US5433179, Jul.18, 1995.
[10] T. Sleman, A. S. Laba, J. J. Laba, “Rotary machine with roller controlled vanes”, US Patent US20120031368A1, Feb. 9, 2012.
[11] 周代翔,「新型爪式轉子引擎之設計與分析」,國立臺灣大學機械工程研究所,碩士論文,2008年。
[12] N. T. Liu, “Rotary internal combustion engines”, US Patent US006082324A, Jul. 4, 2000.
[13] 趙文敏,蚶線,科學月刊247期,1990年7月。
指導教授 施聖洋 洪勵吾 審核日期 2019-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明