博碩士論文 105323092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.139.108.37
姓名 林宏霖(Hung-Lin Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 三維熱流場對不同形式電化學微加工之影響
(The Influence of 3D Thermofuilds Field on Different Types of Electrochemical-Micro Machining)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 遮罩式微電化學加工(Through-Mask Electrochemical Micro-machining,TMEMM)最大的特色在於,刀具不受形狀所限,只需在遮罩上開孔所需的圖案,即可同時加工各種形狀。且加工速度快,無電解液回收問題,較為環保,適合運用在大面積陣列孔加工上。
微電化學加工是由許多不同物理現象所組合而成。以現今之遮罩式微電化學加工之研究中,大多數是以二維單一物理場做模擬,在利用實驗進行加工後之分析。因此,本文嘗試利用有限元素法創建熱流場與電場之三維模型,討論不同流向、施加電壓、電解液流速和改良式模型對加工外形之影響。
模擬結果顯示,相同流速下,電壓越大,平均半徑、平坦度、平均半徑和真圓度也會隨之變大,而正向流在真圓度方面優於側向流;相同電壓下,流速越快,平均深度、平坦度和平均半徑會隨之下降,真圓度則是在側向流流速0.05m/s和正向流流速0.5m/s最好;改良式加工在固定電壓時,正向流的平坦度與平均半徑都較優於側向流,平均深度與真圓度則較差;改良式加工在加工深度上都優於一般式加工,但遮蔽效應與較小加工間隙使平坦度較差,而真圓度則是只有側向流改良式加工優於一般式加工。
摘要(英) In the Through-Mask Electrochemical Micro-machining (TMEMM), one tool can be used to machine work-pieces of different shapes or patterns if different masks are provided. The designing time and cost for tools is largely reduced. The electrolyte recycle doesn’t have problem and the process is very fast. Therefore, TMEMM is suitable in machining arrays of holes in a large area.
The process of TMEMM involves complex physical phenomena. Nowadays, the simulation on TMEMM is primarily restricted in the influence of electric field, plus the experimental verification. In this study, the 3D electric field is implemented with the thermal and flow fields and solved by the finite element method. The effects of flow directions, applied voltages, and electrolyte flow rates on the machined shape are investigated. A modified through mask is proposed and simulated, and comparisons of the machining profiles by traditional and modified masks are made.
Results show that the average depth, flatness, average radius and roundness are all increased as the applied voltage is increased. The roundness in the forward flow is better than that in the lateral flow. As the flow rate is faster, the average depth, flatness and average radius will be decreased. The roundness is at its best at flow rate of 0.05m/s in the lateral flow and 0.5m/s in the forward flow. In the modified TMEMM process, under the same applied voltage, the flatness and average radius in the forward flow are better than that in the lateral flow, while the average depth and roundness are worse. Compared with the traditional TMEMM, the modified TMEMM can yield better average depth, however the shadow effect and small inter electrode gap will let its flatness becomes worse. The modified TMEMM with lateral flow results in better roundness than the traditional EMEMM does.
關鍵字(中) ★ 遮罩式電化學加工
★ 有限元素法
★ 電場
★ 熱流場
★ 模擬
關鍵字(英) ★ through-mask electrochemical micro-machining (TMEMM)
★ finite element method
★ electric field
★ thermofluids field
★ simulation
論文目次 摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 x
第一章 緒論 1
1-1 前言 1
1-1-1 微電化學加工 2
1-1-2 遮罩式微電化學加工 3
1-2 文獻回顧 4
1-3 研究動機 6
第二章 理論分析 8
2-1 基本理論 8
2-2 電流密度與電流效率 9
2-3 電解液導電度 9
2-4 平均深度與平坦度 10
2-5 平均半徑與真圓度 11
2-6 電化學加工之建模需求 12
第三章 數值方法 13
3-1 有限元素法之電場與熱流場分析 13
3-2 電化學反應式 13
3-3 模型定義與假設 14
3-4 模型建立 15
3-5 三維電場與熱流場模型 16
3-5-1 電場之模型設置 16
3-5-2 非等溫流場之模型設置 17
3-5-3 溫度場之模型設置 18
3-6 變形幾何模型 20
3-7 計算流程 20
第四章 結果與討論 22
4-1 網格收斂性之驗證 22
4-1-1 驗證用之模型設定與建立 22
4-1-2 網格收斂性測試 23
4-2 電壓對加工形狀之影響 24
4-3 電解液流速對加工形狀的影響 25
4-4 改良式遮罩對加工形狀的影響 28
4-5 改良式模型與一般式模型之比較 30
4-5-1 側向流之改良式模型與一般式模型 30
4-5-2 正向流之改良式模型與一般式模型 30
第五章 結論 32
5-1 結論 32
5-2 未來展望 33
參考文獻 34
表附錄 38
圖附錄 43
參考文獻 [1] 楊龍杰著,認識微機電,滄海書局,台中市,2001年。
[2] 范智文,“利用電化學加工製作微電極和微孔之研究與分析”,國立中央大學機械所,博士論文,2010年。
[3] 徐泰然著,微機電系統與微系統-設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司台灣分公司,台北市,2003年。
[4] B. Bhattacharyya, J. Munda and M. Malapati, “Advancement in electrochemical micro-machining,” International Journal of Machine Tools and Manufacture, Vol. 44, No.15, pp. 1577-1589, 2004.
[5] 黃暐倫,“利用遮罩式電化學加工製作穿孔之最佳化參數分析”,國立中央大學機械所,碩士論文,2016年。
[6] X.L. Chen, N.S. Qu, H.S. Li and D. Zhu, “The fabrication and application of a PDMS micro through-holes mask in electrochemical micro-manufacturing,” Advances in Mechanical Engineering, Vol. 6, Article ID 943092, 2014.
[7] M. Datta and D. Landolt, “Fundamental aspects and applications of electrochemical microfabrication,” Electrochimica Acta, Vol. 45, No.15-16, pp. 2535-2558, 2000.
[8] R. V.Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through - mask electrochemical micromachining,” Journal of the Electrochemical Society, Vol. 143, No.2, pp. 544-549, 1996.
[9] J. Liu, D. Zhu, N.S. Qu and H.S. Li, “Micro multiple holes produced by through-mask electrochemical machining in metal sheets,” Electromachining & Mould, Vol. 3, pp. 37-39, 2008.
[10] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,” CIRP Annals-Manufacturing Technology, Vol. 58, No.1, pp. 177-180, 2009.
[11] S. Q. Qian, D. Zhu, N.S. Qu, H.S. Li and D.S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No.9, pp. 1121-1127, 2010.
[12] L. Wang, Q.D. Wang, X.Q. Hao, Y.C. Ding and B.H. Lu, “Finite element simulation and experimental study on the through-mask electrochemical micromachining (EMM) process,” The International Journal of Advanced Manufacturing Technology, Vol. 51, No.1, pp. 155-162, 2010.
[13] A. Ivanov, “Simulation of electrochemical etching of silicon with COMSOL,” Proceedings of COMSOL Conference, Stuttgart, Germany, 2011.
[14] A. Ivanov and U. Mescheder, “Dynamic simulation of electrochemical etching of silicon,” Proceedings of COMSOL Conference, Milan, Italy, 2012.
[15] A. Ivanov and U. Mescheder, “Primary current distribution model for electrochemical etching of silicon through a circular opening,” Proceedings of COMSOL Conference, Grenoble, France, 2015.
[16] C. Winkelmann and W. Lang, “Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes,” International Journal of Machine Tools and Manufacture, Vol. 72, pp. 25-31, 2013.
[17] A. D. Davydov, T. B. Kabanovaaand V. M. Volgina, “Modeling of through-mask electrochemical micromachining,” Chemical Engineering, Vol. 41, pp. 85-90, 2014.
[18] X.L. Chen, N.S.Qu, H.S. Li and Z.N. Guoc, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,” PrecisionEngineering, Vol. 39, pp. 204-211, 2015.
[19] S. Qian, and F. Ji, “Investigation on the aluminum-alloy surface with micro-pits array generating by through double mask electrochemical machining,” AASRI International Conference on Industrial Electronics and Applications, pp. 59-62, London UK, 2015.
[20] V.K. Jain and D. Gehlot, “Anode shape prediction in through-mask-ecmm using FEM,” Machining Science and Technology, Vol. 19, No. 2, pp. 286-312, 2015.
[21] X. Zhang, N.Qu, H. Li and Z. Xu, “Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates,” The International Journal of Advanced Manufacturing Technology, Vol. 81, No.9, pp. 1475-1485, 2015.
[22] H.S. Li, G.G. Wang, N.S. Qu and D.D. Zhu, “Through-mask electrochemical machining of a large-area hole array in a serpentine flow channel,” The International Journal of Advanced Manufacturing Technology, Vol. 89, pp. 933-940, 2017
[23] 田福助著,電化學-理論與應用,高立圖書有限公司,台北市,1996年。
[24] J. F. Thorpe and R. D. Zerkle, “Analytic determination of the equilibrium electrode gap in electrochemical machining,” International Journal of Machine Tool Design and Research, Vol. 9, No.2, pp. 131-144, 1969.
[25] S. Hinduja and M. Kunieda. “Modelling of ECM and EDM processes, ”CIRP Annals-Manufacturing Technology, Vol. 62, No. 2, pp. 775-797, 2013.
[26] 中仿科技公司:COMSOL Multiphysics V4.x 几何建模用戶指南,2010年,取自:www.CnTech.com.cn。
[27] M.A. Bejar, and F. Gutierrez, “On the determination of current efficiency in electrochemical machining with a variable gap,” Journal of Materials Processing Technology, Vol. 37, No.1, pp. 691-699, 1993.
[28] S.J. Lee, “COMSOL in electrochemical applications,” Proceedings of COMSOL Conference, Taipei, Taiwan, 2013.
[29] T. Isono, “Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate,” Journal of Chemical and Engineering Data, Vol. 29, No.1, pp. 45-52, 1984.
[30] 陳千蕙,“移動刀具之遮罩式微電化學加工模擬與分析”,國立中央大學機械所,碩士論文,2016年。
[31] 陳泓悅,“熱流場對靜態刀具遮罩式微電化學加工的影響性”,國立中央大學機械所,碩士論文,2017年。
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明