博碩士論文 105323107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.226.185.44
姓名 卓裕桓(Yu-Huan Cho)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以液膜包覆微結構局部定義表面之液珠熱毛細運動分析
(The thermocapillary motion of droplet on the surface defined by microstructure with prewetting liquid film)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 熱毛細現象是由於液體內部存在溫度差異時,使表面張力形成梯度分布,進而產生特定方向的牽引力。這種現象能夠作為液體傳輸的一種驅動力。在過往的研究中,單以熱毛細力驅動液珠,雖然製程與操作簡單,但在短距離內驅動力不足,導致液珠遷移能力薄弱。因此藉由結合其他驅動方法或是改變接觸面的性質等方式,提高熱毛細驅動液珠的遷移能力。
在能夠利用表面物理性改質提高液珠遷移效果的基礎上,本文以乾蝕刻在矽表面製作不同間距的柱狀微結構陣列。另在微結構區域周圍建立側壁,利用側壁將液珠兩側侷限,亦使液珠呈現形狀規則的膠囊狀,降低力學分析上因液珠形狀劇烈改變帶來的影響。並以液膜包覆的形式對結構間隙進行預濕潤處理,避免液珠在遷移過程中因結構間隙而損失體積。
待試片兩端高溫區與低溫區的溫度穩定後,藉由比較不同結構間距試片上液珠的遷移狀況,發現有臨界間距存在。小於臨界間距時降低溫度梯度會讓遷移能力上升,大於臨界間距則反之。並進一步對液珠進行力學分析,發現液珠主要受到恆為負向的黏滯阻力、恆為正向的馬蘭哥尼驅動力、時正時負的內部毛細回流所影響。此外,在結構間隙內部還有一作用力,會將間隙內部的流體由高溫處液體往低溫處傳輸,但其傳輸效果會受到液珠遷移速度抑制。隨著加大結構間距,液珠不管是形狀或內部溫度分布都會更加扭曲,導致誤差與其他未考量分力的影響變大。
從固定結構間距的觀點上,熱毛細力與溫度梯度大小有正相關性。但液珠遷移過程中隨時間展延的跨距,對熱毛細力的影響卻不大。從固定溫度梯度的觀點上,加大結構間距會使低溫度梯度條件之液珠遷移效果下降,高溫度梯度條件之液珠遷移效果上升。在大於臨界間距,遷移能力受到前沿後沿接觸角的影響會大於液珠跨距的影響。
摘要(英) Thermocapillary phenomenon is caused by the temperature difference inside the liquid, which makes the surface tension gradient, and then generates traction in a specific direction. In previous researches, process and operation of driving droplet with thermocapillary method is simple and cost lower, but insufficient driving force in short distance causes droplet migrate slowly. Therefore, improves droplet migration speed by changing surface properties or combining other driving methods.
In the design, based on surface physical modification can improve the droplet migration, using dry-etching to fabricate columnar microstructure arrays with different pitches on the silicon wafer. Establish a side wall around the microstructure area confining the droplet and make it appear in a regular capsule shape, be expected to reduce the effects of changes in the shape of the droplet in migration. In the operation, utilizing prewetting the structural gaps by liquid film to avoid volume loss during droplet migration on gaps.
After the temperature in hot and cold zones of test piece is stable, it is found that a critical structural gap distance exists by comparing the migration of droplet on test pieces with different structure intervals. Decreasing the temperature gradient when the gap distance is smaller than the critical distance will increase the migration ability, and vice versa when it is larger than the critical distance. From the mechanical analysis of droplet, found that the droplet is mainly affected by negative viscous resistance, positive Marangoni driving force, and unstable internal capillary reflow. In addition, there is a force inside the structural gap which will transfer the fluid inside the gap from high temperature zone to low temperature zone, but the transmission capacity will be suppressed by droplet migration speed. As the structure gap distance is increased, both the shape of droplet and the internal temperature distribution will become more distorted, resulting in greater influence of calculation errors and unconsidered forces.
From the viewpoint of fixed structure spacing, the thermal capillary force has a positive correlation with the temperature gradient. And the continuous extension of the droplet span during the migration process has just little effect on the thermal capillary force. From the viewpoint of fixed temperature gradient, increasing the structure gap distance will reduce the droplet migration effect under low temperature gradient conditions, and increase the droplet migration effect under high temperature gradient conditions. When the gap distance above the critical value, the migration capacity if affected by the contact angle more than the droplet span.
關鍵字(中) ★ 熱毛細力
★ 表面微結構
★ 預濕潤
關鍵字(英) ★ Thermocapillary
★ microstructure
★ pre-wetting
論文目次 一、緒論 1
1-1 引言 1
1-2 文獻回顧 2
1-3 研究動機與目的 10
1-4 論文架構 11

二、理論基礎 12
2-1 靜態接觸角 12
2-1-1 陽氏方程式(Young’s equation) 13
2-1-2 溫佐模型(Wenzel model) 14
2-2 動態接觸角 15
2-2-1 動態接觸角(Dynamic contact angle) 16
2-2-2 遲滯效應(Hysteresis effect) 17
2-3 物理性表面改質 18
2-4 表面張力 19
2-5 熱毛細現象 20
2-6 黏滯力 21

三、研究方法 23
3-1 研究架構 23
3-2 角鯊烷流體性質參數 25
3-3 試片製備 28
3-3-1 試片設計 28
3-3-2 製程步驟 30
3-4 實驗架設 32
3-4-1 液膜潤濕實驗 34
3-4-2 角鯊烷滴定於無溫度梯度試片實驗 36
3-4-3 角鯊烷溫度梯度實驗 37
3-5 量測方法 39
3-5-1 距離量測 40
3-5-2 角度量測 41
3-5-3 視角量測 42

四、結果與討論 43
4-1 微結構試片 43
4-2 以溫度梯度於潤濕的微結構試片上驅動液珠結果 45
4-2-1液珠遷移位置 47
4-2-2液珠遷移速度 57
4-2-3液珠遷移加速度 61
4-2-4驅動液珠實驗小結 64
4-3液珠遷移力學模型 65
4-3-1液珠遷移合力 FTotal 69
4-3-2液珠擴散合力 FSpread 70
4-3-3液珠遷移黏滯力 FVis 78
4-3-4液珠遷移熱毛細力 FTh 83
4-3-5實驗驅動合力與熱毛細力FTh比較 88
4-4力學模型修改 91
4-4-1馬蘭哥尼效應 FMa 92
4-4-2液珠內部毛細回流效應 FCa 97
4-4-3 FTh中FMa與FCa主導影響比較 100
4-4-4作用力分析小結 102
4-5微結構間隙內預濕潤影響 104
4-5-1無溫度梯度微結構側壁潤濕夾角 105
4-5-2有溫度梯度微結構間隙潤濕高度 108
4-5-3微結構間隙內預濕潤影響小結 113

五、結論與未來展望 114

參考文獻 117
參考文獻 [1] J. H. Chen et. al., “Droplet manipulation over a hydrophobic surface with roughness patterns”, ASME 2004 heat transfer/fluids engineering summer conference charlotte, North Carolina, USA, 2004.
[2] J. B. Brzoska et. al., “Motions of droplets on hydrophobic model surfaces induced by thermal gradients”, Langmuir, pp.2220-2224,1993.
[3] D. T. Wasan, et. al., “Droplets speeding on surfaces”, Science, Vol 291, pp. 605-606, 2001.
[4] J. Z. Chen et. al., “Effect of contact angle hysteresis on thermocapillary droplet actuation”, Journal of applied physics 97, 014906, 2005.
[5] Y. Zhao et. al., “Thermocapillary actuation of binary drops on solid surfaces”, Applied physics letters 99, 104101, 2011.
[6] D.Q Xie, “柱狀微結構對液珠熱毛細運動之影響”, Department of Mechanical Engineering, NCU, Taiwan, 2015。
[7] Q. Dai et. al., “Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient”, American chemical society, Vol 32, pp.7485-7492, 2016.
[8] G. Karapetsas et. al., “Thermocapillary droplet actuation: effect of solid structure and wettability”, American chemical society, Vol 33, pp.10838-10850, 2017.
[9] T. Young, “An essay on the cohesion of fluids”, Philosophical transactions of the royal society of London Vol. 95, pp. 65-87,1805.
[10] R. N. Wenzel, “Resistance of solid surfaces to wetting by water”, Journal of industrial and engineering chemistry, pp 988–994 , 1936.
[11] L. Feng et. al., “Petal effect: a superhydrophobic state with high adhesive force”, Langmuir, Vol. 24, pp. 4114-4119, 2008.
[12] Y. Y. Yan et. al., “Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces”, Colloid and interface science, Vol. 169, pp. 80-105, 2011.
[13] Z. Yoshimitsu et. al., “Effects of surface structure on the hydrophobicity and sliding behavior of water droplets ”, Langmuir, Vol. 18, pp. 5818-5822, 2002.
[14] T. McMahon et. al., “On size and life”, Scientific american books - W. H. Freeman & Co,1984.
[15] H. J. Wang et. al., “Capillarity of rectangular micro grooves and their application to heat pipes”, Taoyuan, Taiwan, 2005.
[16] Kurt A. G. Schmidt et. al., “New experimental data and reference model for the viscosity and density of squalane”, American chemical society, Vol 60, pp. 137-150, 2014.
[17] Quere et. al., “Capillarity and gravity” Capillarity and wetting phenomena, pp. 33-67, 2004.
[18] Gabor Korosl et. al., “Density and surface tension of 83 organic liquids”, American chemical society, Vol 26, pp. 323-332, 1981
[19] H.B Nguyen, “Transient modeling of a liquid droplet motion caused by combined thermocapillary and buoyancy convection”, Department of Mechanical Engineering, NCU, Taiwan, 2010.
指導教授 洪銘聰(M-T Hung) 審核日期 2020-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明