博碩士論文 105323111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.147.104.120
姓名 游承曄(Cheng-Ye You)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Fabrication of 2.5D Micromodel for Air-Liquid Interaction Experiment)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本文中,我們開發了一種製造微模型的方法,和以前的製程比較起來,製造過程更加容易且使用的設備和材料不這麼昂貴,而製造出來的微模型具有2.5D的流道結構,流道中的垂直結構不是單純的平面,而是有著凹凸的複雜結構,和2D微模型相比,我們的微模型可以更好地代表真實多孔介質,能夠更真實的表現出流體在真實多孔介質中的流動現象。我們將塑膠片材以及雙面膠結合後,使用CNC(Computer Numerical Control)銑削機加工流道,因為材料的透明度很高,僅需要將流體染色後,就可以輕鬆看出流體的流況,且染色流體會在厚度不同的地方,顏色呈現不同的深淺,可以輕易地在複雜的微模型中觀察並且分析,無須透過其他複雜的儀器就能完成結果。
我們製作了單層、四層、八層模型來進行汲取(imbibition)和汲取-排退(imbibition-drainage)實驗。汲取實驗是將濕潤項流體(乙醇)注入模型將非濕潤項流體(空氣)排出,而汲取-排退實驗則是在汲取實驗之後,再注入非濕潤項流體(空氣)將濕潤項流體(乙醇)排出。完成模型之後利用軟管和注射泵浦連結,我們使用"3 μl" ⁄"min" 、6 "μl" ⁄"min" 、60 "μl" ⁄"min" 、150 "μl" ⁄"min" 和300 "μl" ⁄"min" 共五種流率來注入乙醇,比較汲取和汲取-排退實驗中的乙醇飽和率差別。
首先,乙醇在較薄的微模型中可以深入到流道孔隙中,而隨著微模型厚度的增加,乙醇開始只能在微模型的邊緣流動,只能填滿微模型中的角落區域無法填充整個流道,因此乙醇飽和度開始逐漸下降。而在相同厚度的微模型中,乙醇的毛細數較小時,只能夠在邊緣以角偶流的方式進行,而在毛細數逐漸增大後,才開始以完整的流體介面移動並填滿流道。而在相同厚度但內部流道形狀改變時,即使在汲取實驗後有著相同的乙醇飽合度,但空氣被限制在流道中的位置也完全不同,就可以看出流道形狀的簡化,對於流體的流動狀況會有很大的影響。
摘要(英) In this study, we have developed a method for micromodels fabrication. Compared with the previous process, the fabrication is easier to manufacture and the equipment and materials used are less expensive. The micromodel produced has a 2.5D channel structure, and the vertical structure in the channel is not a simple plane, but a complex structure with irregularities. Compared with 2D micromodels, our micromodels can better represent real porous media and can more realistically show the fluids flow in real porous media. After bonding the plastic sheet and the double-sided tape, we use the CNC (Computer Numerical Control) milling machine to process the channel. Because of the high transparency of the material, it is easy to see the fluid flow after only dyeing the fluid. The dyeing fluid will show different color depths in different thicknesses of micromodels, which can be easily observed and analyzed in complex micro-models without the need to go through other complicated instruments.
We made single-layer, four-layer, and eight-layer micromodels for imbibition and imbibition-drainage experiments. The imbibition experiment is to inject the wetting phase fluid (ethanol) into the model to discharge the non-wetting phase fluid (air). In the imbibition-drainage experiment, after the imbibition experiment, to inject non-wetting fluid (air) to discharge the wetting phase fluid (ethanol). Then we use "3 μl" ⁄"min" , 6 "μl" ⁄"min" , 60 "μl" ⁄"min" , 150 "μl" ⁄"min" and 300 "μl" ⁄"min" flow rates for experiment.
First, ethanol can flow into the deep pores of the channel in a thin micromodel. With the increase of the thickness of the micromodel, ethanol can only flow at the edge of the micro-model and fill the corner regions in the micromodel, so the ethanol saturation decreases. In the same thickness micromodel, when the capillary number of ethanol is small, corner flow movement dominates ethanol flow in micromodels and most of the air was trapped at narrow pore throats. After the capillary number is gradually increased, bulk meniscus movement dominates ethanol flow in micromodels, the air trapped in the dead-end pores. At the same thickness but the shape of the internal channel is changed, even if the same ethanol saturation we obtained after the imbibition experiment, the position of the air trapped in the channel is completely different. We can know that the simplification of the shape of the flow channel has a great influence on the flow state of the fluid.
關鍵字(中) ★ 微模型
★ 2.5D
★ 汲取
★ 排退
★ 電腦數位控制
★ 銑床
關鍵字(英) ★ micromodel
★ 2.5D
★ imbibition
★ drainage
★ CNC
★ milling
論文目次 摘要 I
Abstract II
Acknowledgement IV
Table of Content V
List of Figure VI
List of Table VIII
1 Introduction 1
1.1 Microfluidics Fabrication and Application 1
1.2 Major purpose of our study 9
2 Experimental section 11
2.1 Material and Equipment 11
2.2 Contact Angle Measurement 11
2.3 Multilayer Chip Fabrication 13
2.3.1 Define the channel graphics 13
2.3.2 Multilayer microfluidics fabrication 15
2.4 Experimental Setup 19
3 Results and Discussion 20
3.1 Results 20
3.2 Effect of layer number on ethanol saturation 31
3.3 Effect of capillary numbers on ethanol saturation 32
3.4 Effect of layer shape change on ethanol saturation 37
3.5 Effect on remaining ethanol saturation 38
4 Conclusion 39
References 42
Appendix 44
參考文獻 [1] P. Abgrall, and A. M. Gué, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” Journal of Micromechanics and Microengineering, vol. 17, no. 5, pp. R15-R49, 2007.
[2] A. Riaud, C. P. Tostado, K. Wang, and G. Luo, “A facile pressure drop measurement system and its applications to gas–liquid microflows,” Microfluidics and Nanofluidics, vol. 15, no. 5, pp. 715-724, 2013.
[3] K. Xu, P. Zhu, C. Huh, and M. T. Balhoff, “Microfluidic Investigation of Nanoparticles′ Role in Mobilizing Trapped Oil Droplets in Porous Media,” Langmuir, vol. 31, no. 51, pp. 13673-9, Dec 29, 2015.
[4] N. S. Gunda, B. Bera, N. K. Karadimitriou, S. K. Mitra, and S. M. Hassanizadeh, “Reservoir-on-a-chip (ROC): a new paradigm in reservoir engineering,” Lab Chip, vol. 11, no. 22, pp. 3785-92, Nov 21, 2011.
[5] M. Gouet-Kaplan, and B. Berkowitz, “Measurements of Interactions between Resident and Infiltrating Water in a Lattice Micromodel,” Vadose Zone Journal, vol. 10, no. 2, pp. 624, 2011.
[6] B. Berkowitz, "Interchange of Infiltrating and Resident Water in Partially Saturated Media," Transport and Reactivity of Solutions in Confined Hydrosystems, pp. 55-66: Springer, 2014.
[7] A. Alizadeh, M. Khishvand, M. Ioannidis, and M. Piri, “Multi-scale experimental study of carbonated water injection: an effective process for mobilization and recovery of trapped oil,” Fuel, vol. 132, pp. 219-235, 2014.
[8] H. Geistlinger, I. Ataei-Dadavi, and H.-J. Vogel, “Impact of Surface Roughness on Capillary Trapping Using 2D-Micromodel Visualization Experiments,” Transport in Porous Media, vol. 112, no. 1, pp. 207-227, 2016.
[9] M. Y. Ali, “Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling,” International Journal of Mechanical and Materials Engineering, vol. 4, no. 1, pp. 93-97, 2009.
[10] R. D. Sochol, E. Sweet, C. C. Glick, S.-Y. Wu, C. Yang, M. Restaino, and L. Lin, “3D printed microfluidics and microelectronics,” Microelectronic Engineering, vol. 189, pp. 52-68, 2018.
[11] J. Gauteplass, K. Chaudhary, A. R. Kovscek, and M. A. Fernø, “Pore-level foam generation and flow for mobility control in fractured systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 468, pp. 184-192, 2015.
[12] A. Anbari, H. T. Chien, S. S. Datta, W. Deng, D. A. Weitz, and J. Fan, “Microfluidic Model Porous Media: Fabrication and Applications,” Small, vol. 14, no. 18, pp. e1703575, May, 2018.
[13] S. A. Bou-Mikael, “Design and optimization of 2.5 dimension porous media micromodel for nanosensor flow experiments,” 2012.
[14] K. Xu, T. Liang, P. Zhu, P. Qi, J. Lu, C. Huh, and M. Balhoff, “A 2.5-D glass micromodel for investigation of multi-phase flow in porous media,” Lab Chip, vol. 17, no. 4, pp. 640-646, Feb 14, 2017.
[15] A. T. Krummel, S. S. Datta, S. Münster, and D. A. Weitz, “Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium,” AIChE Journal, vol. 59, no. 3, pp. 1022-1029, 2013.
[16] V. Joekar-Niasar, M. Prodanović, D. Wildenschild, and S. M. Hassanizadeh, “Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media,” Water Resources Research, vol. 46, no. 6, 2010.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2019-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明