博碩士論文 105323116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.145.60.4
姓名 謝佳育(Chia-Yu Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns)
相關論文
★ 神經內視鏡的球面解耦機械手臂設計★ 新型機電整合之多色3-D列印機
★ Workspace Characterization of a 3-RRR Spherical Parallel Mechanism★ 對於遠程超聲波檢查機器人機械手控制裝置的設計
★ Design of a Spherical Reconfigurable Linkage for the Control of Mechanism Center of Rotation★ Formulation of a New Index for the Evaluation of Mechanism Workspace
★ Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy★ Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm
★ Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality★ 應用於股骨復位手術中之機器人機構設計
★ Design of an Augmented Clamping Instrument for Advanced Aneurysm Surgery★ Contribution to the Design of a Robotic Platform for Liposuction
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有鑑於一些需要特別照護的新生兒被安置在新生兒保育箱中,為了監測他們的大腦發育,醫生需對嬰兒進行顱內超聲波檢查。然而,由於這種臨床護理的高重複性,採用遠程操作機器人系統的設計將能夠協助醫生完成這項任務,並且改善檢查過程中的品質。
本研究旨在設計一個符合運動需求的機械結構,使其能夠抓取超音波探頭伸入保育箱對嬰兒進行檢查。首先擷取超音波探頭操作的運動姿態數據以分析運動需求,本研究提出一種基於兩個組合縮放聯動的機械結構。第一個縮放機構執行終端效應器圍繞遠端運動中心的線性運動。第二個提供超音波探頭圍繞另一個遠端運動中心的角運動。接著計算正向和反向運動學模型以研究機構的線性和角度運動,並執行一系列運動模擬以驗證這些模型。最後完成機構設計,計算各軸的扭力需求來選用馬達。並製作控制面板,利用Arduino程式控制馬達使機構運作。
摘要(英) Some newborns requiring particular care are placed in a neonatal incubator, in order to monitor their brain development, the doctor will perform an intracranial ultrasound examination of the baby. Due to the high repetition of this clinical care, the remotely operated robotic system is designed to assist doctors with this task and improve the quality of the inspection process.
This study aims to design a mechanical structure that meets the needs of motion, and is able to grasp the ultrasonic probe into the incubator to inspect the baby. First of all, the motion posture data of the ultrasonic probe operation is captured to analyze the kinematic requirement. A mechanical architecture based on two combined pantographic linkages is proposed. The first pantographic mechanism performs the linear positioning of the end effector around a remote center of motion. The second one provides its angular position of the ultrasound probe around another remote center of motion. The forward and inverse kinematic models are calculated to study the linear and angular positioning of the mechanism. A series of kinematic simulations are performed to validate these models. Finally, complete the mechanism design, calculate the required torque for each shaft to select the motor. Produce control panel, use the Arduino program to control the motor to actuate the mechanism.
關鍵字(中) ★ 機構設計
★ 縮放結構
★ 遠端超聲波技術
★ 運動學分析
★ 模擬
關鍵字(英) ★ Mechanism design
★ Pantographic architecture
★ Tele-echography
★ Kinematic analysis
★ Simulations
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgments iii
Table of content iv
List of Figures vi
List of Table x
Explanation of Symbols xi
1. Introduction 1
1-1 Vision in intracranial ultrasound examination 1
1-2 Tele-echography robotic system 4
2. Specification Analysis of the Intracranial Ultrasound examination 15
2-1 Preliminary observations 15
2-2 Motion Capture Experiments 17
2-3 Kinematic Requirements of Intra-incubated Echography 19
3. Definition of the mechanical architecture 21
3-1 Perspective of RCM mechanisms 21
3-2 Kinematic design and analysis of the mechanism 24
3-2-1 Conceptual design 24
3-2-2 Forward kinematic model 26
3-2-3 Inverse kinematic model 28
3-2-4 Velocity model 30
3-3 Kinematic simulation on the mechanism 33
3-3-1 Kinematic model verification 33
3-3-2 Intracranial examination simulations 38
4. Design of robotic manipulator prototype 40
4-1 Design method of the robotic manipulator 40
4-1-1 Design of the proximal mechanism 41
4-1-2 Design of the distal mechanism 44
4-2 Linkage deformation 45
4-3 Motor Torques Calculation 46
4-3 Mechatronic implementation of the manipulator 51
5. Conclusion 54
Reference 55
Appendix A 58
參考文獻 [1] Slovis, T.L., Kuhns, L.R.: Real-time sonography of the brain through the anterior fontanelle. American Journal of Roentgenology, 136, 277-286 (1981).
[2] Pape, K.E., Cusick, G., Blackwell, R.J., Houang, M.T.W., Sherwood, A., Thorburn R.J., Reynolds, E.O.R: Ultrasound Detection of Brain Damage in Preterm Infants. The Lancet, 313(8129), 1261-1264 (1979).
[3] Hsieh, W.-S., Jeng, S.-F, Hung, Y.-L, Chen, P.-C, Chou, H.-C, Tsao, P.-N.: Outcome and hospital cost for infants weighing less than 500 grams: A tertiary centre experience in Taiwan. Journal of Paediatrics and Child Health, 43(9), 627-631 (2007).
[4] T. Umeda, A. Matani, O. Oshiro, K. Chihara, “Tele-echo System: A Real-Time Telemedicine System Using Medical Ultrasound Image Sequence,” Telemedicine Journal, Vol. 6, pp. 63-67, 2000.
[5] D.S. Martin, D.A. South, K.M. Garcia, P. Arbeille, “Ultrasound in space,” Ultrasound in Medicine & Biology, Vol. 29, No. 1, pp. 1-12, 2003.
[6] G. Kontaxakis, S. Walter, G. Sakas, “EU-TeleInVivo: An integrated Portable Telemedicine Workstation Featuring Acquisition, Processing and Transmission over Low-Bandwidth Lines of 3D Ultrasound Volume Images,” IEEE EMBA International Conference on Information Technology Applications in Biomedicine, pp. 158-163, 2000.
[7] S.E. Salcudean, G. Bell, S. Bachmann, W.H. Zhu, P. Abolmaesumi, P.D. Lawrence, “Robot-assisted diagnostic ultrasound-design and feasibility experiments,” Medical Image Computing and Computer-Assisted Intervention (MICCAI’99), pp. 1062-1071, 1999.
[8] M. Mitsuishi, S. Warisawa, T. Tsuda, T. Higuchi, N. Koizumi, H. Hashizume, K. Fujiwara, “Remote Ultrasound Diagnostic system,” IEEE International Conference on Robotics & Automation (ICRA 2001), pp. 1567-1574, 2001.
[9] A. Vilchis, J. Troccaz, P. Cinquin, K. Masuda, F. Pellissier, “A new robot architecture for tele-echography,” IEEE Transaction on Robotics and Automation, Special issue on Medical Robotics, Vol. 19, No.5, pp. 922-926, 2003.
[10] R. Nakadate, Y. Matsunaga, J. Solis, A. Takanishi, E. Minagawa, M. Sugawara, K. Niki. “Development of a robot assisted carotid blood flow measurement system,” Mechanism and Machine Theory, Vol. 46, Issue 8, pp. 1066-1083, 2011.
[11] F. Najafi, “Design and prototype of a robotic system for remote palpation and ultrasound imaging,” M.Sc. thesis, University of Manitoba, 2004.
[12] F. Najafi, N. Sepehri, “A robotic wrist for remote ultrasound imaging,” Mechanism and Machine Theory, Vol. 46, Issue 8, pp. 1153-1170, 2011.
[13] A. Gourdon, P. Poignet, G. Poisson, P. Vieyres, P. Marche, “A new robotic mechanism for medical application,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 33-38, 1999.
[14] F. Courrèges, G. Poisson, P. Vieyres, A. Vilchis, “Real time exhibition of a simulated space tele-echography using an ultralight robot,” International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2003.
[15] C. Delgorge, F. Courreges, L. Bassit, C. Novales, C. Rosenberger, N. Smith-Guerin, C. Bru, R. Gilabert, M. Vannoni, G. Poisson, P. Vieyres, “A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robot,” IEEE Trans. Inf. Technol. Biomed, Vol. 9, No. 1, pp. 50-58, 2005.
[16] C. Canero, N. Thomos, G. Triantafyllidis, G. Litos, M. Strintzis, “Mobile Tele-Echography: User Interface Design,” IEEE Trans. Inf. Technol. Biomed, Vol. 9, No. 1, pp. 44-49, 2005.
[17] P. Arbeille, J. Ayoub, V. Kieffer, P. Ruiz, B. Combes, A. Coitrieux, P. Herve, S. Garnier, B. Leportz, E. Lefbvre, F. Perrotin, “Realtime tele-operated abdominal and fetal echography in 4 medical centres from one expert center using a robotic arm & ISDN or satellite link,” Proceedings of IEEE International Conference on Automation Quality and Testing Robotics, Vol. 1, pp. 45-46, 2008.
[18] L. Nouaille, P. Vieyres and G. Poisson, “Process of Optimization for a 4 DOF Tele-echography Robot,” Robotica, Vol. 30, pp. 1131-1145, 2012.
[19] T. Essomba, M. A. Laribi, J.P. Gazeau, S. Zeghloul, G. Poisson “Contribution to the Design of a Robotized Tele-Ultrasound System,” Frontiers of Mechanical Engineering, Vol. 7, Issue 2, pp. 135-149, 2012.
[20] K. Ito, T. sayama, H. Iwata, S. Sugano, “A blood flow measurement robotic system: Ultrasound visual servoing algorithms under pulsation and displacement of an artery,” Journal of Robotics and Mechatronics, Vol. 24, Issue 5, pp. 773-781, 2012.
[21] G. Zong, X. Pei, J. Yu, S. Bi, “Classification and Type Synthesis of 1-DoF Remote Center of Motion Mechanisms”, Mechanism and Machine Theory, Vol. 43 (12), pp. 1585-1595, 2008.
[22] Ghodoussi, M., Butner, S.E., Wang, Y., 2002, “Robotic Surgery - The Transatlantic Case,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1882–1888, Washington DC, USA.
指導教授 伊泰龍(Térence Essomba) 審核日期 2019-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明