博碩士論文 105323604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.191.216.163
姓名 拉卡索(YUKE HARY LAKSONO)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用
(DESIGN OF SPECTRAL BEAM SPLITTER BASED ON THE COMBINATION OF DIFFRACTIVE GRATING AND PLANO-CONVEX LENS FOR CONCENTRATED PHOTOVOLTAIC/THERMAL SYSTEM)
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 波前檢測應用於氣體折射率量測★ 多重曲率之聚光元件應用於聚光型太陽能電池系統
★ 太陽光模擬系統之設計與製作★ 有機發光二極體熱特性模擬研究
★ 有機發光二極體激子光電特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聚光型太陽光電 / 太陽熱混合系統(concentrating photovoltaic and thermal systems, CPVT)是具潛力的潔能技術,用以將太陽能轉換為電與熱能。 本研究提出一光束分頻CPVT架構,其藉由繞射光柵及平凸透鏡將太陽光之紅外波段與非紅外波段之光波分離,並分別導引至各自之接收元件。在繞射光柵方面,本研究設計閃耀式及二階式二型光柵,並分析光柵形狀誤差的影響。而在熱分析方面,藉由熱流原理分別針對此二型CPVT所使用之熱管進行溫度分布之模擬分析。再由模擬分析搭配實驗量測之結果推算閃耀光柵型與二元光柵型CPVT的總輸出效率分別為 43.37%, 40.22%。本研究之成果將作為未來實作光束分頻CPVT之參考。
摘要(英) A concentrating photovoltaic and thermal systems (CPVT) is a potential solar energy system for clean electricity and thermal generation. In this research, a spectral beam-splitting CPVT configuration is proposed based on the combination of a diffractive grating and a plan-convex lens to spectrally and spatially split infrared light and non-infrared light onto the receivers. Two types of gratings, blazed and binary phase gratings, are designed as the diffractive grating herein. Meanwhile, the shape distortion of the main component, the grating, is studied. Moreover, the temperature distribution of the heat pipe is simulated based on heat flux generated by a blazed grating or a binary phase grating. The total power efficiency of a CPVT show that the blazed and binary configurations has slightly higher from the estimated measurement are 43.37% and 40.22%, respectively. The research findings are expected to guide the designs of CPVTs based on diffraction optics and refractive lens.
關鍵字(中) ★ 聚光型太陽光電 / 太陽熱混合系統
★ 分光
★ 繞射光柵
★ 平凸透鏡
★ 熱管
關鍵字(英) ★ concentrating photovoltaic/thermal
★ light splitting
★ diffractive grating
★ plan-convex lens
★ heat pipe
論文目次 Abstract ii
Acknowledgements iii
List of Figures vi
List of tables viii
1 CHAPTER 1 INTRODUCTION 1
1.1 Motivation and problem 1
1.2 Developments of the SBS CPVT systems 3
1.3 Research objectives 7
1.4 Significance of research 8
1.5 Organization of research 9
2 CHAPTER 2 FOUNDATIONS AND DESIGN CONSIDERATIONS 10
2.1 Basic conceptions of the SBS CPVT system 10
2.2 Design considerations 11
2.2.1 Optical consideration 12
2.2.2 Thermodynamic and electrical considerations 15
2.3 Diffraction grating theory and its application in photovoltaic 21
2.3.1 Grating equation 21
2.3.2 Grating in the spectral beam splitting-photovoltaic application 23
2.3.3 Grating fabrication 24
2.4 Heat pipe as the cooling system 25
2.5 Thermal Theory for the Heat Pipe as Cooling Systems 26
2.5.1 General theory of heat transfer in heat pipe 26
2.5.2 Governing equation and boundary conditions of heat transfer 27
3 CHAPTER 3 OPTICAL SIMULATION 29
3.1 Structure of SBS CPVT 29
3.2 Design of diffraction grating using GSolver software 30
3.3 Steps in GSolver 31
3.4 Diffraction Grating Optimization 34
3.5 Optical Model Using LightTool Software 37
3.6 Analysis and Discussion of Fabrication Tolerance 43
3.6.1 Distortion effect on groove shape of binary grating 43
3.6.2 Optical power performance with shape grating distortion 47
4 CHAPTER 4 THERMAL SIMULATION 50
4.1 Thermal Simulation Using ANSYS Software Workbench 17. 2 50
4.1.1 General Information 50
4.1.2 The general design of heat pipe 50
4.1.3 Experimental procedures 51
4.1.4 Thermal model 56
4.1.5 Thermal performance of heat pipe 57
4.2 Results and Discussions 58
5 CHAPTER 5 CONCLUSIONS 64
6 References 65
參考文獻 [1] International Energy Agency IEA, “Solar Photovoltaic Energy,” Technol. Roadmap, p. 60, 2014.
[2] EIA, “Annual Energy Outlook 2017 with projections to 2050,” pp. 1–64, 2017.
[3] L. W. Florschuetz, “Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors,” Sol. Energy, vol. 22, no. 4, pp. 361–366, 1979.
[4] O. Z. Sharaf and M. F. Orhann, “Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II - Implemented systems, performance assessment, and future directions,” Renew. Sustain. Energy Rev., vol. 50, pp. 1566–1633, 2015.
[5] X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy, vol. 187, pp. 534–563, 2017.
[6] C. Michel, J. Loicq, T. Thibert, and S. Habraken, “Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications.,” Appl. Opt., vol. 54, no. 22, pp. 6666–73, 2015.
[7] P. Moriarty and D. Honnery, “What is the global potential for renewable energy?,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 244–252, 2012.
[8] S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review,” Energy Procedia, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2013.05.072.
[9] F. Basics and A. Systems, “SOLAR CELLS From Basics to Advanced Systems,” Solar Cells, 1983. .
[10] F. Kasten and A. T. Young, “Revised optical air mass tables and approximation formula 0 . 4 ° ). Therefore , we turned to stepwise analytical integra - tion , which is possible when the air density ρ is expressible as a linear function of height h . Thanks to the fine height resolut,” vol. 28, no. 22, pp. 4735–4738, 2000.
[11] “Solar Spectral Irradiance: Air Mass 1.5.” [Online]. Available: http://rredc.nrel.gov/solar/spectra/am1.5/. [Accessed: 13-Jun-2018].
[12] J. S. Coventry and K. Lovegrove, “Development of an approach to compare the ‘value’ of electrical and thermal output from a domestic PV/thermal system,” Sol. Energy, vol. 75, no. 1, pp. 63–72, 2003.
[13] B. J. Huang, T. H. Lin, W. C. Hung, and F. S. Sun, “Performance evaluation of solar photovoltaic/thermal systems,” Sol. Energy, vol. 70, no. 5, pp. 443–448, 2001.
[14] “Triple Junction Solar Cell.” [Online]. Available: http://www.arima.com.tw/group1-detail.php?index_m1_id=1&index_m2_id=6&index_id=3#parentHorizontalTab3. [Accessed: 07-Mar-2018].
[15] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 1, pp. 57–67, 2006.
[16] “03.The Grating Equations?: SHIMADZU CORPORATION.” [Online]. Available: https://www.shimadzu.com/opt/guide/diffraction/03.html. [Accessed: 18-May-2018].
[17] C. Palmer, “Diffraction Grating Handbook,” J. Opt. Soc. Am., vol. 46, no. 1, pp. 20–23, 2005.
[18] “Profile of Grating Grooves?: SHIMADZU CORPORATION.” [Online]. Available: https://www.shimadzu.com/opt/guide/diffraction/10.html. [Accessed: 03-Jul-2018].
[19] D. D. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Praather, Diffractive Optics: Design, Fabrication, and Test. 2003.
[20] S. Edition, APPLIED. .
[21] H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy, vol. 90, no. 1, pp. 309–315, 2012.
[22] S. Wu and C. Xiong, “Passive cooling technology for photovoltaic panels for domestic houses,” Int. J. Low-Carbon Technol., vol. 9, no. 2, pp. 118–126, 2014.
[23] A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng., vol. 16, no. 1, pp. 81–87, 1996.
[24] W. G. Anderson, P. M. Dussinger, D. B. Sarraf, and S. Tamanna, “Heat pipe cooling of concentrating photovoltaic cells,” 2008 33rd IEEE Photovolatic Spec. Conf., no. July, pp. 1–6, 2008.
[25] S. R. Abd-Allah, O. E. Abdellatif, and E.-S. Yousef El-Kady, “Performance of Cooling Photovoltaic Cells using Nanofluids Performance of Cooling Photovoltaic Cells using Nanofluids,” Eng. Sci. Res. J., no. 25, pp. 1–15, 2016.
[26] M. Mahmoud, M. M. A. Elmaaref, A. A. Askalany, and M. Salem, “Solar thermoelectric cooling technology,” Proc. 3rd Int. Conf. Energy Eng. Fac. Energy Eng., no. January, pp. 0–7, 2016.
[27] T. G. Grubisi?-?abo, F., Nizeti?, S., & Marco, “Photovoltaic Panels: A Review of the Cooling Techniques,” Trans. FAMENA, vol. 40, no. 1, p. p63–74. 12p., 2016.
[28] A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, “Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review,” Sol. Energy Mater. Sol. Cells, vol. 160, no. July 2016, pp. 275–286, 2017.
[29] M. Engineering, “Thermal Performance Characteristics of Heat Pipes,” vol. 18, 1975.
[30] “Heat Pipe .nl | Nederlands kenniscentrum voor heat pipe technologie | Dutch knowledge center for heat pipe technology.” [Online]. Available: http://www.heatpipe.nl/index.php?page=heatpipe&lang=EN. [Accessed: 03-Jul-2018].
[31] G. Solver and D. Company, “GSolver.”
[32] G. J. Swanson, “Binary Optics Technology?: The Theory and Design of Multi-level Diffractive Optical Elements,” Contract, pp. 1–53, 1989.
[33] C. Michel, J. Loicq, F. Languy, and S. Habraken, “Solar Energy Materials & Solar Cells Optical study of a solar concentrator for space applications based on a diffractive / refractive optical combination,” Sol. Energy Mater. Sol. Cells, vol. 120, pp. 183–190, 2014.
[34] F. Siewert, B. Lochel, J. Buchheim, F. Eggenstein, A. Firsov, G. Gwalt, O. Kutz, S. Lemke, B. Nelles, I. Rudolph, F. Schafers, T. Seliger, F. Senf, A. Sokolov, C. Waberski, J. Wolf, T. Zeschke, I. Zizak, R. Follath, T. Arnold, F. Frost, F. Pietag, and A. Erko, “Gratings for synchrotron and FEL beamlines: A project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin,” J. Synchrotron Radiat., vol. 25, no. 1, pp. 91–99, 2018.
[35] “Emissitivity of Common Materials.” [Online]. Available: https://www.omega.com/literature/transactions/volume1/emissivitya.html#c. [Accessed: 24-Jul-2018].
[36] F. P. Incropera, Fundamentals of Heat and Mass Transfer, Sixth edit. 2007.
指導教授 韋安琪 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明