博碩士論文 105323610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.148.108.134
姓名 孔祥桓(Xiang-Huan Kong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用灰色關聯分析法探究遮罩式電化學穿孔之最佳化參數
(The Optimal Conditions in Through Mask Electrochermical Drilling by Grey Relational Analysis)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電化學微加工(Electrochemical Micro-Machining,EMM),屬於非傳統加工方法的一種。其優點有不受材料硬度與強度的影響,可加工任何金屬材料,刀具無耗損,加工速度快且工件表面不含殘留應力,工件無熱變質層之生成及表面粗糙度佳等。並且具有設備低廉、大量製造以及降低成本等優勢,是目前公認最具有發展潛力的新興產業之一。
灰色關聯分析是以有限的實驗來獲得最多的實驗結果,並分析實驗參數對加工品質之影響程度且找到最佳參數組合的一種方法,其優點在於可以同時進行多重特性之評估。本研究使用自行設計之金屬遮罩,以紅銅作為刀具,厚度為0.1mm的不鏽鋼SUS301薄板作為工件,進行遮罩電化學穿孔實驗,以驗證金屬遮罩之可行性。以灰色關聯分析方法作為工具分析實驗結果,探討遮罩電化學加工參數(電解液濃度、操作電壓、遮罩孔洞直徑、遮罩厚度)對於底切、均勻度及真圓度之影響趨勢,並找到加工範圍內之最佳參數。
通過實驗結果可以發現,在使用雙面膠增加工件與遮罩間的貼合度後,金屬遮罩可以運用在遮罩電化學加工之中。對於加工成品之特性影響最大的實驗參數為遮罩孔洞直徑與遮罩厚度,而實驗之最佳參數組合(A_3 B_3 C_2 D_1)為:電解液濃度16wt%、操作電壓18V、遮罩孔洞直徑1.2 mm、遮罩厚度0.1mm。加工結果如下:底切為0.07mm、平均偏差量為0.04mm與圓度誤差為0.18mm。與初始條件相比,其灰色關聯度從0.53提升到0.98,其值將近於目標理想值。

關鍵字:遮罩式電化學加工,灰色關聯分析
摘要(英) Electrochemical machining (ECM) is one of the non-traditional manufacturing processes. The advantages of ECM include not being affected by the hardness and strength of the material,applicable to any metal material , fast processing speed and no surface residual stress, no heat zone and smooth workpiece surface. Furthermore , it has merits of lower price in equipments, mass production and lower costs, etc.Currently,it’s considered as one of the most promising industry.
Grey relational analysis (GRA) is a method of obtaining the most experimental results by limited experiments, and analyzing the influence of experimental parameters on the processing quality and finding the best combination of parameters, the advantage of GRA is that it could have multi-objective optimization. This study uses a self-designed metal mask, uses pure copper as a tool, stainless steel SUS301 sheet with a thickness of 0.1 mm as a workpiece, Perform TMEMM processing experiments to verify the feasibility of the metal mask. GRA is used to analyze the influences of parameters (e.g.: electrolyte concentration, applied voltage, diameter of the mask hole, and the thickness of the mask) on the undercut, uniformity and roundness of array holes, and estimate the best combination of parameters.
Through the experimental results, it can be found that the metal mask can be used in the electrochemical processing of the mask after the double-sided adhesive is used to increase the fit between the workpiece and the mask. The most important factors for the characteristics of finished products are diameter of the mask hole and thickness of the mask and the best parameter combination is A_3 B_3 C_2 D_1 (electrolyte concentration 16wt%, applied voltage 18V, diameter of the mask hole 1.2 mm, and the thickness of the mask 0.1mm). The processing results were as follows: the undercut was 0.07 mm, the average deviation was 0.04 mm, and the roundness error was 0.18 m. Compared with the original working condition (A1B1C1D1), the GRA is increased from 0.34 to 0.96. It is closed to the ideal working condition.
關鍵字(中) ★ 遮罩式電化學加工
★ 灰色關聯分析
關鍵字(英) ★ Through-mask Electrochemical Machining
★ Grey Relational Analysis
論文目次 摘要 I
ABSTRACT III
目錄 V
表目錄 IX
圖目錄 X
符號說明 XII
第一章 緒論 1
1-1 前言 1
1-2 電化學加工(ECM) 3
1-3 遮罩式電化學加工(TMEMM) 5
1-4 文獻回顧 6
1-4-1遮罩式電化學加工之文獻回顧 6
1-4-2灰色關聯分析之文獻回顧 9
1-5 研究目的 10
第二章 理論基礎 12
2-1電化學加工之基本理論 12
2-1-1電流效率(Current Efficiency) 13
2-1-2極化與過電壓 14
2-1-3歐姆定律(Ohm′s Law) 15
2-1-4液相質傳動力學 15
2-2導電度、導電度與濃度之關係、電流密度 17
2-2-1電流密度(Current Density) 17
2-2-2導電度(Conductivity) 17
2-2-3導電度與濃度之關係 18
2-3 電化學反應式 19
2-4 底切、均勻度、真圓度 20
2-4-1底切 21
2-4-2均勻度 21
2-4-3真圓度 22
2-5 灰色關聯分析 23
2-5-1數據歸一化 23
2-5-2灰色關聯係數 25
2-5-3灰色關聯度 25
2-5-4平均灰色關聯度 26
第三章 實驗設備與步驟 27
3-1實驗設備 27
3-1-1機台結構設計 27
3-1-2刀具進給控制系統 29
3-1-3直流電源供應器 29
3-1-4幫浦 30
3-1-5磁石攪拌器 30
3-1-6秤重計 30
3-1-7 OVM Lite 影像式量測系統 31
3-2 實驗材料 31
3-2-1電極材料 31
3-2-2電解液 32
3-3 絕緣遮罩 32
3-4 建構直交表 33
3-5實驗步驟與注意事項 34
3-5-1陣列孔洞加工實驗 34
3-5-2 實驗注意事項 35
第四章 結果與討論 37
4-1 自行設計金屬遮罩之加工情況探討 37
4-2實驗參數選擇之探討 40
4-3灰色關聯分析實驗之結果 42
4-4利用最佳參數組合實驗之結果 46
第五章 結論 49
5-1 結論 49
5-2 未來展望 50
參考文獻 52
參考文獻 [1] 楊龍傑編著,認識微機電,蒼海書局,台中市,2001年。
[2] 徐泰然著,微機電系統與微系統:設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司,臺北市,2003年。
[3] S.H. Ahn, S.H. Ryu, D.K. Choi and C.N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precision Engineering, Vol. 28, No. 2, pp. 129-134, 2004.
[4] 木本康雄著,精密加工之電學應用,賴耿陽譯著,復漢出版社,1982年。
[5] 佐藤敏一著,金屬腐蝕加工技術,賴耿陽譯著,復漢出版社,台南,1986年。
[6] R.V. Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through-mask electrochemical micromachining,” Journal of the Electrochemical Society, Vol. 143, No. 2, pp. 544-549, 1996.
[7] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 177-180, 2009.
[8] S.Q. Qian, D. Zhu, N.S. Qu, H.S. Li and D.S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No. 9-12, pp. 1121-1127, 2010.
[9] N.S. Qu , X.L. Chen , H.S. Li and Y.B. Zeng, “Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist,” Chinese Journal of Aeronautics, Vol. 27, No. 4, pp. 1030-1036, 2014.
[10] S.Q. Qian, F. Ji, N.S. Qu and H.S. Li, “Improving the localization of surface texture by electrochemical machining with auxiliary anode,” Materials and Manufacturing Processes, Vol. 29, No. 11-12, pp. 1488-1493, 2014.
[11] N.S. Qu, X.L. Chen, H.S. Li and D. Zhu, “Fabrication of PDMS micro through-holes for electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 1-4, pp. 487-494, 2014.
[12] X.L. Chen, N.S. Qu, H.S. Li and Z.N. Guo, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,” Precision Engineering, Vol. 39, pp. 204-211, 2015.
[13] S.Q. Qian and F. Ji, “Investigation on the aluminum-alloy surface with micro-pits Array generating by through double mask electrochemical machining,” AASRI International Conference on Industrial Electronics and Applications, pp. 59-62, London UK, 2015.
[14] G.Q. Wang, H.S. Li , N.S Qu and D. Zhu “Improvement of electrolyte flow field during through-mask electrochemical machining by changing mask wall angle, ” Journal of Manufacturing Processes, Vol.25, pp. 246-252 , 2017, China.
[15] D. Chakradhar and A.V. Gopal, “Multi-objective optimization of electrochemical machining of EN31 steel by grey relational analysis,” International Journal of Modeling and Optimization, Vol. 1, pp. 113-117, 2011.
[16] R. Thanigaivelan and R. Arunachalam, “Optimization of process parameters on machining rate and overcut in electrochemical micromachining using grey relational analysis,” Journal of Science & Industrial Research, Vol. 72, pp. 36-42, 2013.
[17] J. Liu, D. Zhu, L. Zhao and Z. Xu, “Experimental investigation on electrochemical machining of γ-TiAl intermetallic,” 15th Machining Innovations Conference for Aerospace Industry, pp. 20-24, 2015, Hannover, Germany.
[18] J. Jeykrishnan, B.V. Ramnath, C. Elanchezhian, and S. Akilesh, “Parametric analysis on Electro-chemical machining of SKD-12 tool steel,” 5th International Conference of Materials Processing and Characterization, pp. 3760-3766, 2016, Hyderabad, India.
[19] 田福助,電化學:原理與應用,高立圖書,新北市,2011年。
[20] 胡啟章,電化學原理與方法,五南圖書出版股份有限公司,臺北市,2002年。
[21] Thorpe J.F., R.D. Zerkle, “Theoretical analysis of the equilibrium sinking of shallow, axially symmetric, cavities by electrochemical machining,” Fundamentals of Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39, 1971.
[22] 田福助,電化學基本原理與應用,五洲出版有限公司,2004年。
[23] 吳浩青、李永舫,電化學動力學,科技圖書,臺北市,2001年。
[24] 溫坤禮 、趙忠賢、張宏志、陳曉瑩、溫惠築,灰色理論,五南圖書出版公司,臺北市,2009年。
[25] 江金山、吳佩玲、蔣祥第、張廷政、詹福賜,張軒庭、溫坤禮,灰色理論入門,高立圖書有限公司,臺北市,1998年。
[26] E.S. Lee, J.W. Park and Y.H. Moon, “A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing,” The International Journal of Advanced Manufacturing Technology, Vol. 20, No. 10, pp. 720-726, 2002.
[27] C. Rosenkranz, M.M. Lohrengel and J.W. Schultze, “The surface structure during pulsed ECM of iron in NaNO3,” Electrochimica Acta, Vol. 50, No. 10, pp. 2009-2016, 2016.
指導教授 洪勵吾(Hourng, Lih-Wu) 審核日期 2018-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明