博碩士論文 105323612 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.236.51.151
姓名 普樹源(BUI THI XUYEN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
(A Study on Influence of Finger-Shaped Milling Tool Offsets on Machining Accuracy of Vacuum Pump Screw Rotors)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立★ 內嚙合珩磨加工圓柱齒輪與螺桿轉子方法之 研究
★ 含裂紋損傷的直齒圓柱齒輪振動特性研究★ 冷媒雙螺桿壓縮機之容積調節滑閥負載分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 螺桿轉子之加工精度對雙螺桿真空泵之內部流體洩漏及工作性能有極大影響,在實務中,利用指形銑刀進行螺桿轉子之成形銑削是常用的加工方法之一,然而,如何利用加工機台上刀具偏移的方式,降低及控制因刀具磨耗所造成之轉子線形加工誤差,使符合精度要求,至今甚少文獻進行研究及探討。故本文基於具間隙之轉子線形離散點資料創生指形銑刀廓形並建立數學模型,透過建立傳統數控銑床上刀具與被加工轉子間之相對運動關係,進行加工模擬並研究指形銑刀偏移後之轉子線形加工偏差,其中,包括三個線性及兩個角度之刀具偏移量。此外,本研究亦應用敏感度矩陣(Sensitivity Matrix)法結合奇異值分解(SVD)求解可行的刀具偏移組合,以達到所需之轉子線形加工精度。由數值案例之結果,可證實本文所提方法可以有效降低轉子線形之加工誤差。
關鍵詞:成形銑削、刀具偏移、敏感度矩陣、SVD、真空泵、加工精度
摘要(英) Manufacturing accuracy of a pair of screw rotors greatly affects the performance of a twin-screw vacuum pump. In the practical application, form milling with the finger-shaped cutting tools is one of the commonly used ways to manufacture the screw rotors. Nevertheless, how to reduce and control the rotor profile error, caused by the tool abrasion, by means of the adjustment of cutting tool offsets on the CNC milling machine has not been studied by now. Therefore, the mathematical model is presented to generate the finger-shaped cutting tool profile based on the discrete rotor profile points with clearance. Next, the relative motion relationship between the cutting tool and the screw rotor on a traditional milling machine with the tool offsets is established to pursue the cutting simulation and study the manufactured rotor profile deviation with respect to different milling tool offsets, including three linear and two angular offsets. In addition, the sensitivity matrix method combined with the singular value decomposition (SVD) is applied to obtain a feasible combination of tool offsets to achieve the desired rotor profile accuracy. As the results shown in the numerical examples, it has been validated that the manufacturing accuracy of rotor profile can be reduced by applying the proposed method.
Keywords: form milling, tool offset, sensitivity matrix, SVD, vacuum pump, manufacturing accuracy
關鍵字(中) ★ 成形銑削
★ 刀具偏移
★ 敏感度矩陣
★ SVD
★ 真空泵
★ 加工精度
關鍵字(英)
論文目次 摘 要 i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures vii
List of Tables ix
Nomenclature x
Chapter 1. Introduction 1
1-1. Research background 1
1-2. Literature review 6
1-3. Motivations and goals 8
1-4. Thesis structure 9
Chapter 2. Mathematical model for generation of finger-shaped cutting tool and rotor profiles 11
2-1. Generation of rotor screw surface 11
2-2. Mathematical modelling of generation of finger-shaped cutting tool 15
2-3. Mathematical modelling for cutting simulation of screw rotor profile 20
Chapter 3. Application of sensitivity matrix and SVD method on rotor milling 23
3-1. Calculation method of normal deviation of generated rotor profile 23
3-2. Determination of cutting tool offsets based on rotor profile deviation by sensitivity matrix and SVD methods 26
Chapter 4. Numerical examples 29
4-1. Correctness verification of generated finger-shaped cutting tool 29
4-1-1. Comparison of the finger-shaped cutting tool profiles generated by mathematical model and HPMS software 31
4-1-2. Comparison between the referenced and generated rotor profile 32
4-2. Influence of the cutting tool offsets on the rotor profile 33
4-2-1. Influence of the different tangential offsets on the rotor profile 34
4-2-2. Influence of the different radial offsets on the rotor profile 35
4-2-3. Influence of the axial offsets on the rotor profile 36
4-2-4. Influence of the tilt angle offsets on the rotor profile 38
4-2-5. Influence of the approach angle offsets on the rotor profile 39
4-3. Normal deviation of the rotor profiles with clearance 41
4-3-1. Normal deviation of the rotor profile through adjustment of three cutting tool offsets for epicycloid AB including the tangential offset, the axial offset, and the radial offset 42
4-3-2. Normal deviation of the rotor profile through adjustment of four cutting tool offsets including the tangential offset, the tilt angle offset, the axial offset, and the radial offset. 44
4-3-3. Normal deviation of generated and goal rotor profile with adjustment of five cutting tool offsets for epicycloid AB 46
4-3-4. Normal deviation of generated and goal rotor profile with adjustment of five cutting tool offsets for compound curve CF 47
Chapter 5. Conclusions 49
References 50
Vitae 53
參考文獻 [1] J. Wang, et al, "Analysis and numerical simulation of a novel gas–liquid multiphase scroll pump," International Journal of Heat and Mass Transfer, vol. 91, pp. 27-36, 2015.
[2] A. Bergström, "An innovative rotor milling method for flexible multi-functional machines," IOP Conference Series: Materials Science and Engineering, 2018, p. 012007.
[3] D. Yan, et al, "Numerical investigation of flow characteristics in twin-screw pump under cavitating conditions," IOP Conference Series: Materials Science and Engineering, 2017, p. 012026.
[4] L. Tao, et al, "A numerical method for evaluating effects of installation errors of grinding wheel on rotor profile in screw rotor grinding ", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, pp. 1381-1398, 2016.
[5] A. P. Troup, "Vacuum pumps with claw-type rotor and roots-type rotor near the outlet," Google Patents, 1998.
[6] F. L. Litvin, & A. Fuentes, Gear geometry and applied theory, Cambridge University Press, 2004.
[7] S. P. Radzevich, Dudley′s handbook of practical gear design and manufacture, CRC Press, 2012.
[8] N. Stosic, I. Smith, and A. Kovacevic, "Screw compressors: mathematical modelling and performance calculation ", Springer Science & Business Media, 2005.
[9] Y. R. Wu and C. W. Fan, "Mathematical Model for Screw Rotor Form Grinding on Vertical Multi-Axis Computerized Numerical Control Form Grinder ", Journal of Manufacturing Science and Engineering, vol. 135, p. 051020, 2013.
[10] Z. X. Zhang and Z. H. Fong, "A novel tilt form grinding method for the rotor of dry vacuum pump ", Mechanism and Machine Theory, vol. 90, pp. 47-58, 2015.
[11] R. H. Hsu, Y. R. Wu, and Z. A. Chen, "A Numerical Method for Reversely Generating a Pair of Conjugated Rotor Profiles of Twin-screw Compressor from the Measured Profile Data " , Procedia CIRP, vol. 63, pp. 483-487, 2017.
[12] N. Fang, P. S. Pai, and S. Mosquea, "A comparative study of sharp and round-edge tools in machining with built-up edge formation: cutting forces, cutting vibrations, and neural network model ", The International Journal of Advanced Manufacturing Technology, vol. 53, pp. 899-910, 2011.
[13] C. J. Chiang and Z. H. Fong, "Design of form milling cutters with multiple inserts for screw rotors ", Mechanism and Machine Theory, vol. 45, pp. 1613-1627, 2010.
[14] S. Y. Park, et al. "A study on the machining of compressor rotors using formed tools " , International Journal of Precision Engineering and Manufacturing, vol. 11, pp. 195-200, 2010.
[15] J. Wei, et al, "Study on precision grinding of screw rotors using CBN wheel ", International Journal of Precision Engineering and Manufacturing, vol. 11, pp. 651-658, 2010.
[16] Q. Tang, et al, "Design method for screw forming cutter based on tooth profile composed of discrete points ", Journal of Mechanical Design, vol. 137, p. 085002, 2015.
[17] Z. Shen, et al, "A novel rotor profile error tracing and compensation strategy for high precision machining of screw rotor based on trial cutting of limited samples ", Shock and Vibration, vol. 2015, 2015.
[18] Z. H. Fong and G. H. Chen, "Gear flank modification using a variable lead grinding worm method on a computer numerical control gear grinding machine ", Journal of Mechanical Design, vol. 138, p. 083302, 2016.
[19] Y. P. Shih and S. D. Chen, "A flank correction methodology for a five-axis CNC gear profile grinding machine ", Mechanism and Machine Theory, vol. 47, pp. 31-45, 2012.
[20] J. Han, et al, "A novel gear flank modification methodology on internal gearing power honing gear machine ", Mechanism and Machine Theory, vol. 121, pp. 669-682, 2018.
[21] M. Gabiccini, A. Artoni, and M. Guiggiani, "On the identification of machine settings for gear surface topography corrections (DETC2011-47727) ", Journal of Mechanical Design, vol. 134, p. 041004, 2012.
指導教授 吳育仁 審核日期 2019-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明