博碩士論文 105324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.234.143.26
姓名 羅憲綸(Xian-Lun Luo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體
(3,5-bis(decylthio)dithieno[3,2-b:2′,3′-d]thiophene (DSDTT)-Based Small Molecules for High-Performance Organic Field Effect Transistors (OFET) by Solution Shearing Method)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件
★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用
★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
★ 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響★ 超音波噴塗技術結合多通道注射幫浦進料調控系統製備混合鹵素鈣鈦礦太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機場效應電晶體(Organic field-effect transistor,OFET)是一種利用有機半導體組成通道的場效應電晶體。OFET 在近年來一直是熱門的研究主題之一,尤其是在軟性電子領域,基於具有低溫製程、低廉成本、延展性、大面積製作、製程簡單及分子可設計性等優點,使其不論在設計的彈性或應用的空間上,都比無機材料矽基板大,未來將成為軟性電子的主流。本論文利用可溶性有機小分子透過剪切力塗佈法製作高性能場效應電晶體。以接上側鏈增加溶解度之三並環?吩(3,5-bis(decylthio)dithieno[3,2-b:2′,3′-d]thiophene,DSDTT)為核心,並在核心兩側接上三種不同數目並環?吩構成之次要結構:(1) 2,6-di(thiophen-2yl) DT (2)2,6-di(thieno[3,2-b]-
thiophen-2yl) DTT (3)2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl) DDTT,來合成實驗中使用的 DSDTT 系列 p 型有機小分子半導體材料(DT-DSDTT、DTT-DSDTT、DDTT-DSDTT)。
透過剪切力塗佈法之溶液製程,由 DSDTT 系列分子所製成之場效應
電晶體隨著結構上總並環?吩數目增加,其載子遷移率從 DT-DSDTT 的
10 -5 cm 2 V -1 s -1 ,增加至 DDTT-DSDTT 的 2.6 cm 2 V -1 s -1 ;從紫外光-可見光吸收光譜、原子力顯微鏡表面形貌分析與低掠角 X 光繞射進行有機半導體薄膜之分析,可以觀察到透過增加次結構之並環?吩數目,使材料有著更明顯的分子間作用力,也藉由側鏈上之硫與次結構上之硫(S-S)作用力,使整個分子結構呈現共平面,伴隨剪切力塗佈法降低排列時分子間不共平面所造成之負面影響,形成更有序之分子排列。此研究成功利用可溶液製程之簡單有機小分子製作出高載子遷移率場效應電晶體。
摘要(英) Three new organic small molecule semiconductors with alkyl chain-substituted 3,5-bis(decylthio)dithieno[3,2-b:2′,3′-d]thiophene (DSDTT) as the central core and both ends capped with thiophene (DT-DSDTT), thieno-thiophene (DTT-DSDTT) and dithienothiophene (DDTT-DSDTT) have been
synthesized and characterized for organic field effect transistor (OFET) applications.
Single crystal and molecular orbital computations indicate that the DSDTT core is completely planar, likely via S(Alkyl) ? S(DTT) intra-molecular locks. Thin film and charge transport properties are analyzed by optical microscopy (OM), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and grazing incidence X-ray diffraction (GIXRD) experiments. The OFET through
solution-sheared DDTT-DSDTT displays the highest hole mobility of up to 2.6 cm 2 V -1 s -1 and a ON/OFF current ratio (I ON /I OFF ) greater than 10 5 . These results can prove that molecules with S ? S intramolecular locks have excellent mobility
performance. Solution shearing method also offers a good manufacturing process. This research outcome can help organic molecular design and improve OFET performance in the future work.
關鍵字(中) ★ 有機場效應電晶體
★ 剪切力塗佈法
★ 溶液製程
★ 有機小分子
關鍵字(英)
論文目次 摘要------------------------------------------------------------------------------------------i
Abstract-------------------------------------------------------------------------------------ii
致謝----------------------------------------------------------------------------------------iii
目錄----------------------------------------------------------------------------------------iv
圖目錄-------------------------------------------------------------------------------------vii
表目錄------------------------------------------------------------------------------------xiii
一. 緒論-----------------------------------------------------------------------------------1
1-1 前言-----------------------------------------------------------------------------------1
1-2 基本物理概念介紹----------------------------------------------------------------3
1-2-1 電子與電洞-----------------------------------------------------------------------3
1-2-2 費米能階與功函數--------------------------------------------------------------3
1-2-3 有機半導體材料電荷傳遞機制-----------------------------------------------4
1-3 有機場效應電晶體----------------------------------------------------------------5
1-3-1 簡介--------------------------------------------------------------------------------5
1-3-2 元件結構--------------------------------------------------------------------------6
1-3-3 基本工作原理及模式-----------------------------------------------------------8
1-3-4 特徵曲線、輸出曲線及電性參數--------------------------------------------9
1-4 有機半導體材料------------------------------------------------------------------12
1-4-1 有機小分子半導體材料------------------------------------------------------12
1-4-2 有機高分子半導體材料------------------------------------------------------17
1-4-3 有機分子之非共價結構閉鎖效應 (Noncovalent conformational locks)
----------------------------------------------------------------------------------------------22
1-5 有機半導體製程------------------------------------------------------------------24
1-5-1 高真空熱蒸鍍法製程(Vacuum Thermal Deposition) -------------------24
1-5-2 溶液製程(Solution Process) -------------------------------------------------26
1-5-2-1 液滴塗佈法(Drop Casting) ------------------------------------------------27
1-5-2-2 旋轉塗佈製程(Spin Coating) ---------------------------------------------31
1-5-2-3 印刷法製程(Printing) ------------------------------------------------------33
1-5-2-4 半月型塗佈法(Meniscus-guided Coating)-剪切力塗佈法
(Solution-shearing) ----------------------------------------------------------35
1-6 研究動機---------------------------------------------------------------------------37
二. 實驗---------------------------------------------------------------------------------39
2-1 實驗藥品---------------------------------------------------------------------------39
2-2 實驗設備與裝置------------------------------------------------------------------41
2-3 實驗方法---------------------------------------------------------------------------42
2-3-1 基板表面處理與表面修飾層------------------------------------------------42
2-3-2 元件製備------------------------------------------------------------------------43
2-4 實驗分析---------------------------------------------------------------------------44
2-4-1 電性量測------------------------------------------------------------------------44
2-4-2 紫外光至可見光波段光譜儀(UV-Vis Spectroscopy) -------------------44
2-4-3 偏光光學顯微鏡(Polarized Optical Microscopy) ------------------------44
2-4-4 原子力學顯微鏡(Atomic Force Microscopy) -----------------------------44
2-4-5 低掠角 X 光繞射(Grazing Incidence X-ray Diffraction,GIXRD) ---45
2-4-6 分子模擬計算------------------------------------------------------------------45
三. 結果與討論------------------------------------------------------------------------46
3-1 有機場效應電晶體元件電性分析---------------------------------------------46
3-2 有機小分子半導體材料性質鑑定---------------------------------------------50
3-3 溶液製程薄膜表面形貌分析---------------------------------------------------58
3-3-1 剪切力塗佈薄膜在光學顯微鏡下之表面形貌---------------------------58
3-3-2 剪切力塗佈薄膜在原子力學顯微鏡下之表面形貌---------------------61
3-4 有機小分子材料半導體薄膜微結構分析------------------------------------63
四. 結論和未來展望------------------------------------------------------------------70
參考文獻----------------------------------------------------------------------------------72
附錄----------------------------------------------------------------------------------------76
參考文獻 [1] H. Cui, X. Yang, J. Peng, F. Qiu, Soft Matter 2017, 13, 5261.
[2] E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 2012, 24, 2945.
[3] H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
[4] A. Facchetti, Mater. Today 2007, 10, 28.
[5] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B.
V. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat Mater 2010, 9, 859.
[6] Y. Liu, N. Qi, T. Song, M. Jia, Z. Xia, Z. Yuan, W. Yuan, K. Q. Zhang, B.
Sun, ACS Appl Mater Interfaces 2014, 6, 20670.
[7] C. A. Di, F. Zhang, D. Zhu, Adv. Mater. 2013, 25, 313.
[8] S. R. Thomas, P. Pattanasattayavong, T. D. Anthopoulos, Chem. Soc. Rev.
2013, 42, 6910.
[9] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[10] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 2002,
81, 268.
[11] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, J.
Appl. Phys. 2002, 92, 5259.
[12] R. Mondal, R. M. Adhikari, B. K. Shah, D. C. Neckers, Org. Lett. 2007, 9,
2505.
[13] R. Mondal, B. K. Shah, D. C. Neckers, J. Am. Chem. Soc. 2006, 128,
9612.
[14] S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey, Appl. Phys. Lett.
2007, 91, 063514.
[15] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
[16] M. He, F. Zhang, The Journal of Organic Chemistry 2007, 72, 442.
[17] J. Youn, P.-Y. Huang, Y.-W. Huang, M.-C. Chen, Y.-J. Lin, H. Huang, R.
P. Ortiz, C. Stern, M.-C. Chung, C.-Y. Feng, L.-H. Chen, A. Facchetti, T.
J. Marks, Adv. Funct. Mater. 2012, 22, 48.
[18] H. E. Katz, A. J. Lovinger, J. G. Laquindanum, Chem. Mater. 1998, 10,
457.
[19] W. Wu, Y. Liu, D. Zhu, Chem. Soc. Rev. 2010, 39, 1489.
[20] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T.
Yui, J. Am. Chem. Soc. 2007, 129, 15732.
[21] Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F.
Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
[22] M.-H. Yoon, A. Facchetti, C. E. Stern, T. J. Marks, J. Am. Chem. Soc.
2006, 128, 5792.
[23] R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H.
Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater. 2003, 15,
1278.
[24] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem.
Soc. 2012, 134, 4084.
[25] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles,
I. McCulloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772.
[26] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G.
Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, Adv.
Funct. Mater. 2005, 15, 77.
[27] D. Treat Neil, A. Brady Michael, G. Smith, F. Toney Michael, J. Kramer
Edward, J. Hawker Craig, L. Chabinyc Michael, Advanced Energy
Materials 2010, 1, 82.
[28] Y.-K. Lan, C.-I. Huang, The Journal of Physical Chemistry B 2009, 113,
14555.
[29] S. Schott, E. Gann, L. Thomsen, S.-H. Jung, J.-K. Lee, R. McNeill
Christopher, H. Sirringhaus, Adv. Mater. 2015, 27, 7356.
[30] J. Cho, H. Cheon Kwang, H. Ahn, H. Park Kwang, S.-K. Kwon, Y.-H.
Kim, S. Chung Dae, Adv. Mater. 2015, 27, 5587.
[31] X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe, M. D. Watson, Chem.
Mater. 2012, 24, 1434.
[32] M. Yuan, M. Durban Matthew, D. Kazarinoff Peter, F. Zeigler David, H.
Rice Andrew, Y. Segawa, K. Luscombe Christine, J. Polym. Sci., Part A:
Polym. Chem. 2013, 51, 4061.
[33] H. H. Fong, V. A. Pozdin, A. Amassian, G. G. Malliaras, D.-M. Smilgies,
M. He, S. Gasper, F. Zhang, M. Sorensen, J. Am. Chem. Soc. 2008, 130,
13202.
[34] J. Lee, A. R. Han, J. Kim, Y. Kim, J. H. Oh, C. Yang, J. Am. Chem. Soc.
2012, 134, 20713.
[35] J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H.
Lim, Y. Zhou, H. Su, B. S. Ong, Sci. Rep. 2012, 2, 754.
[36] H. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117,
10291.
[37] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom,
IEEE Electron Device Lett. 1997, 18, 87.
[38] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014,
7, 2145.
[39] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct.
Mater. 2005, 15, 671.
[40] W. H. Lee, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, Y. D. Park, Y. H.
Kim, J. I. Han, K. Cho, Appl. Phys. Lett. 2007, 90, 132106.
[41] H. Shim, A. Kumar, H. Cho, D. Yang, A. K. Palai, S. Pyo, ACS Applied
Materials & Interfaces 2014, 6, 17804.
[42] F. Zhang, C.-a. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H.
Sirringhaus, D. Zhu, Adv. Mater. 2012, 25, 1401.
[43] M. Tantiwiwat, A. Tamayo, N. Luu, X.-D. Dang, T.-Q. Nguyen, The
Journal of Physical Chemistry C 2008, 112, 17402.
[44] B. Nketia-Yawson, H.-S. Lee, D. Seo, Y. Yoon, W.-T. Park, K. Kwak, J.
Son Hae, B. Kim, Y.-Y. Noh, Adv. Mater. 2015, 27, 3045.
[45] K. Zhao, O. Wodo, D. Ren, U. Khan Hadayat, R. Niazi Muhammad, H.
Hu, M. Abdelsamie, R. Li, Q. Li Er, L. Yu, B. Yan, M. Payne Marcia, J.
Smith, E. Anthony John, D. Anthopoulos Thomas, T. Thoroddsen
Sigurdur, B. Ganapathysubramanian, A. Amassian, Adv. Funct. Mater.
2016, 26, 1737.
[46] H. Yoo, H. Choi Hyun, J. Shin Tae, T. Rim, K. Cho, S. Jung, J.-J. Kim,
Adv. Funct. Mater. 2015, 25, 3658.
[47] P. S. Jo, D. T. Duong, J. Park, R. Sinclair, A. Salleo, Chem. Mater. 2015,
27, 3979.
[48] Z. Qi, F. Zhang, C.-a. Di, J. Wang, D. Zhu, Journal of Materials Chemistry
C 2013, 1, 3072.
[49] D. Li, L. J. Guo, Appl. Phys. Lett. 2006, 88, 063513.
[50] Y.-H. Kim, B. Yoo, E. Anthony John, K. Park Sung, Adv. Mater. 2011, 24,
497.
[51] N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, E. K.
Chapman, J. E. Anthony, O. D. Jurchescu, Org. Electron. 2010, 11, 1960.
[52] K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K.
You, D.-Y. Kim, Y.-Y. Noh, Adv. Funct. Mater. 2012, 22, 2915.
[53] S. Liu, X. Zhang, M. Yin, H. Feng, J. Zhang, L. Zhang, W. Xie, ACS
Applied Energy Materials 2018, 1, 103.
[54] S. Bose, S. S. Keller, T. S. Alstrom, A. Boisen, K. Almdal, Langmuir
2013, 29, 6911.
[55] N. Tsao Hoi, D. Cho, W. Andreasen Jens, A. Rouhanipour, W. Breiby Dag,
W. Pisula, K. Mullen, Adv. Mater. 2008, 21, 209.
[56] P. Miskiewicz, M. Mas-Torrent, J. Jung, S. Kotarba, I. Glowacki, E.
Gomar-Nadal, D. B. Amabilino, J. Veciana, B. Krause, D. Carbone, C.
Rovira, J. Ulanski, Chem. Mater. 2006, 18, 4724.
[57] A. Pierre, M. Sadeghi, M. Payne Marcia, A. Facchetti, E. Anthony John,
C. Arias Ana, Adv. Mater. 2014, 26, 5722.
[58] J. Xu, Y. Wang, H. Shan, Y. Lin, Q. Chen, V. A. L. Roy, Z. Xu, ACS
Applied Materials & Interfaces 2016, 8, 18991.
[59] W.-Y. Lee, G. Giri, Y. Diao, J. Tassone Christopher, R. Matthews James,
L. Sorensen Michael, C. B. Mannsfeld Stefan, W.-C. Chen, H. Fong Hon,
B. H. Tok Jeffrey, F. Toney Michael, M. He, Z. Bao, Adv. Funct. Mater.
2014, 24, 3524.
[60] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim,
S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature
2011, 480, 504.
[61] Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M.
Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nature
Materials 2013, 12, 665.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2018-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明