博碩士論文 105324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:44.192.94.177
姓名 楊士永(Shih-Yung Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 搭建可提供電刺激與機械刺激之生物反應器
(Fabrication of a bioreactor for applying mechanical and electrical stimulations)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 電刺激與機械刺激在組織工程中扮演著極為重要的角色,為了研究他們對於細胞及組織的影響,開發一能夠同時進行電刺激及機械刺激的生物反應器是必要的。在這項研究中,我們透過將聚?咯(PPy)聚合於二甲基矽氧烷(PDMS)薄膜上,製作了一可拉伸的導電薄膜。為了促進PPy的聚合,我們用氫氧化鈉(NaOH)水溶液對PDMS薄膜進行預處理,修飾其表面以增加粗糙度。NaOH的預處理時間直接影響了PPy/PDMS薄膜的電性質以及生物適合性。在對其電性質可靠度進行測試後,確定其在拉伸30~40%應變量之間仍可保有低且穩定的電阻值(20kΩ)。接著透過MTT測試證實導電薄膜有助於表面細胞之活性。綜合電性質與MTT之結果,我們發現經過NaOH預處理6小時之PPy/PDMS薄膜具有最穩定之電性質與生物相容性。該薄膜雖然外觀呈現黑色,但其具有透光性質,因此可以透過顯微鏡直接觀察培養於上方的細胞。將PPy/PDMS薄膜結合流道層、培養層,製造出能夠對細胞進行電刺激以及機械刺激之生物反應器並且將其投入實測中,首先對C2C12進行頻率為0.5 Hz且應變量為10%之循環拉伸刺激,由結果可以看到循環拉伸可以有效的改變細胞的排列方向,在肌管分化實驗結果顯示循環拉伸可以有效控制肌管的排列同時也有效提升肌管的分化能力,並且對肌管分化的指標基因如肌細胞生成素(Myogenin)和肌球蛋白重鍊(myosin heavy chain,MHC)有上調控的效果。另外在電刺激的部份,則是以0.1、0.33及1V/cm的直流電進行刺激,結果顯示雖然電刺激對於細胞的排列並無顯著的影響,但可以有效提升肌管的分化效率。最後由qPCR的結果顯示,直流電刺激雖然造成MyoD的基因表現被抑制,但對於肌管分化的指標基因Myogenin和MHC都有顯著上升的調控。以上實驗結果,證實所開發的生物反應器可以對C2C12細胞進行循環拉伸及電刺激,藉以促進其分化能力。未來該裝置除了能進行肌肉細胞體外刺激培養,也可以用於研究肌肉相關疾病對物理刺激的反應機轉。
摘要(英) Electrical and mechanical stimulations both play important roles in the tissue engineering. In order to simultaneously explore their effects on tissue regeneration, it is essential to develop a bioreactor to electrically and mechanically stimulate cells at the same time. In this study, we fabricated a stretchable conductive film by polymerizing pyrrole on PDMS surface. To promote the deposition of polypyrrole (PPy), PDMS substrates were pretreated NaOH solution to increase surface roughness, and this pretreatment was critical to the electrical property and biocompatibility of PPy/PDMS films. The prepared PPy/PDMS films demonstrate excellent electrical properties that they maintained low electic resistance (20kΩ) under 30~40% tensile strain and were reliable during 200 cycles of 10% strain. The results MTT assay revealed that these conductive PPy/PDMS films highly promoted viability of C2C12 cells. We pretreated PDMS NaOH solution for 6 hours in the following experiment because this group demonstrated best electrical properties and biocompatibility. These PPy/PDMS films were dark but transparent and thus can be easily applied for monitoring surface via the microscope. Therefore, these PPy/PDMS films were applied to build a bioreactor for the application of electrical and mechanical stimulations. Firstly, this device was applied for mechanical stimulation that cells were cyclically stretched for 6 hours of 10 % tensile strain at 0.5Hz for 4 days. The results showed that the treated cells were aligned perpendicular to the stretching direction. The result myotube differentiation suggested that cyclic stretching effectively not only aligned myotubes perpendicular to the stretching direction but also improved the index of differentiation. Moreover, genes correlative to myotube differentiation including myogenin and myosin heavy chain (MHC), were also promoted. Regarding to electrical stimulation, 0.1, 0.33, and 1V/cm were applied to treat surface cells for 4 hour each day for 4 days. Although there was no significant effect on the cell alignment, the MHC expression and differentiation index were highly improved. The results of qPCR showed that both myogenin and MHC genes were upregulated, but the MyoD has been inhibited. These results suggested that our developed bioreactor is feasible to mechanically and electrically stimulate C2C12 cells to promote myogenic differentiation. This device can be applied not only promote muscle tissue regeneration in vitro but also as a model to investigate the pathology muscle disease.
關鍵字(中) ★ 電刺激
★ 機械刺激
★ 生物反應器
★ 小鼠肌肉纖維母細胞
關鍵字(英) ★ electrical stimulation
★ mechanical stimulation
★ bioreactor
★ C2C12
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧與理論基礎 3
2-1 組織工程 3
2-1-1 骨骼肌組織工程 5
2-2 生醫材料 7
2-2-1 導電高分子 8
2-3 肌肉組織 9
2-3-1 肌肉的組成 9
2-3-2 肌肉的發生過程 11
2-4 機械刺激對肌肉細胞的影響 12
2-4-1 機械刺激裝置 16
2-5 電刺激對肌肉的影響 19
2-6 結合機械刺激與電刺激對肌肉的影響 22
第三章 實驗方法及設備 24
3-1 實驗藥品 24
3-1-1 材料製備藥品 24
3-1-2 細胞培養及肌肉分化藥品 26
3-1-3 免疫螢光染色用藥品 28
3-1-4 RNA萃取、反轉錄cDNA、PCR試劑 29
3-1-5 其他藥品 30
3-2 實驗儀器 30
3-3 試藥製備及實驗方法 32
3-3-1 生物反應器設計、製作 32
3-3-2 微接觸印刷(Micro contact printing) 41
3-3-3 細胞繼代培養與與冷凍解凍 45
3-3-4 肌管分化培養液配方 47
3-3-5 肌管分化 47
3-3-6 免疫螢光染色 48
3-3-7 細胞骨架染色 49
3-3-8 螢光染色分析 50
3-3-9 電性質量測 50
3-3-10 MTT生物活性分析 51
3-3-11 即時聚合?反應儀 ( qPCR ) 53
3-3-12 掃描式電子顯微鏡 56
3-4 實驗設計與架構 57
3-4-1 材料之物理性質 57
3-4-2 材料之化學定性 57
3-4-2 材料之生物適合性 57
3-4-3 物理性刺激對細胞型態及排列的影響 57
3-4-4 物理性刺激對肌管分化的影響 58
第四章 實驗結果與討論 59
4-1 材料之性質 59
4-1-1 表面特徵 59
4-1-2 親疏水性 62
4-1-3 紅外線光譜FTIR-ATR分析 64
4-1-4 電性質 68
4-1-5 機械應變對材料電性質之影響 69
4-1-6 細胞培養之光學成像 71
4-2 材料之生物適合性測定 72
4-2-1 MTT 測試對細胞活性分析 72
4-3 微接觸印刷 75
4-4 循環拉伸對細胞之影響 76
4-5 循環拉伸對肌管分化之影響 80
4-5-1 循環拉伸對C2C12肌管分化與排列之影響 80
4-5-2往復式循環拉伸對C2C12肌管分化調控基因的影響 83
4.6 直接電刺激對細胞之影響 86
4-6-1 直接電刺激對細胞活性及排列之影響 86
4-6-2直接電刺激對C2C12肌管分化的影響 89
結論 94
參考文獻 96
參考文獻 1. P.J. Morris, Transplantation - A medical miracle of the 20th century. New England Journal of Medicine, 2004. 351(26): p. 2678-2680.
2. J.R. Fuchs, B.A. Nasseri, and J.P. Vacanti, Tissue engineering: A 21st century solution to surgical reconstruction. Annals of Thoracic Surgery, 2001. 72(2): p. 577-591.
3. D. Huh, Y.S. Torisawa, G.A. Hamilton, H.J. Kim, and D.E. Ingber, Microengineered physiological biomimicry: Organs-on-Chips. Lab on a Chip, 2012. 12(12): p. 2156-2164.
4. J.H. Sung, M.B. Esch, J.M. Prot, C.J. Long, A. Smith, J.J. Hickman, and M.L. Shuler, Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a Chip, 2013. 13(7): p. 1201-1212.
5. G.A. Truskey, H.E. Achneck, N. Bursac, H.F. Chan, C.S. Cheng, C. Fernandez, S.M. Hong, Y. Jung, T. Koves, W.E. Kraus, K. Leong, L. Madden, W.M. Reichert, and X.H. Zhao, Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Research & Therapy, 2013. 4: p. 5.
6. H. Vandenburgh, J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford, Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle & Nerve, 2008. 37(4): p. 438-447.
7. A. Khodabukus and K. Baar, Defined Electrical Stimulation Emphasizing Excitability for the Development and Testing of Engineered Skeletal Muscle. Tissue Engineering Part C-Methods, 2012. 18(5): p. 349-357.
8. A.D. Bach, J.P. Beier, J. Stern-Staeter, and R.E. Horch, Skeletal muscle tissue engineering. Journal of Cellular and Molecular Medicine, 2004. 8(4): p. 413-422.
9. L.G. Griffith and M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 2006. 7(3): p. 211-224.
10. R. Dennis, B. Smith, A. Philp, K. Donnelly, and K. Baar, Bioreactors for guiding muscle tissue growth and development. 2008.
11. <淺談組織工程.pdf>.
12. T. Ifukube, Artificial organs: recent progress in artificial hearing and vision. Journal of Artificial Organs, 2009. 12(1): p. 8-16.
13. R.J. Zienowicz and E. Karacaoglu, Implant-based breast reconstruction with allograft. Plastic and Reconstructive Surgery, 2007. 120(2): p. 373-381.
14. M.R. Roh, J.Y. Jung, and K.Y. Chung, Autologous Fat Transplantation for Depressed Linear Scleroderma-Induced Facial Atrophic Scars. Dermatologic Surgery, 2008. 34(12): p. 1659-1665.
15. R. Langer and J.P. Vacanti, TISSUE ENGINEERING. Science, 1993. 260(5110): p. 920-926.
16. J.M. Grasman, M.J. Zayas, R.L. Page, and G.D. Pins, Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 2015. 25: p. 2-15.
17. P.K. Law, T.G. Goodwin, Q.W. Fang, M.B. Deering, V. Duggirala, C. Larkin, J.A. Florendo, D.S. Kirby, H.J. Li, M. Chen, J. Cornett, L.M. Li, A. Shirzad, T. Quinley, T.J. Yoo, and R. Holcomb, CELL TRANSPLANTATION AS AN EXPERIMENTAL TREATMENT FOR DUCHENNE MUSCULAR-DYSTROPHY. Cell Transplantation, 1993. 2(6): p. 485-505.
18. S. Guettier-Sigrist, G. Coupin, S. Braun, J.M. Warter, and P. Poindron, Muscle could be the therapeutic target in SMA treatment. Journal of Neuroscience Research, 1998. 53(6): p. 663-669.
19. S.M. Goldman, B.E.P. Henderson, T.J. Walters, and B.T. Corona, Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. Plos One, 2018. 13(1): p. 15.
20. B.T. Corona, C.L. Ward, H.B. Baker, T.J. Walters, and G.J. Christ, Implantation of In Vitro Tissue Engineered Muscle Repair Constructs and Bladder Acellular Matrices Partially Restore In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss Injury. Tissue Engineering Part A, 2014. 20(3-4): p. 705-715.
21. B.T. Corona, X.W. Wu, C.L. Ward, J.S. McDaniel, C.R. Rathbone, and T.J. Walters, The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials, 2013. 34(13): p. 3324-3335.
22. V. Aarimaa, M. Kaariainen, S. Vaittinen, J. Tanner, T. Jarvinen, T. Best, and H. Kalimo, Restoration of myofiber continuity after transection injury in the rat soleus. Neuromuscular Disorders, 2004. 14(7): p. 421-428.
23. T.J. Burkholder, Mechanotransduction in skeletal muscle. Frontiers in Bioscience, 2007. 12: p. 174-191.
24. <宋信文 and 陳松青, 生醫材料簡介. 2003.pdf>.
25. K.J.L. Burg, S. Porter, and J.F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials, 2000. 21(23): p. 2347-2359.
26. N.K. Guimard, N. Gomez, and C.E. Schmidt, Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007. 32(8-9): p. 876-921.
27. B.L. Guo and P.X. Ma, Conducting Polymers for Tissue Engineering. Biomacromolecules, 2018. 19(6): p. 1764-1782.
28. W.A. El-Said, C.H. Yea, J.W. Choi, and I.K. Kwon, Ultrathin polyaniline film coated on an indium-tin oxide cell-based chip for study of anticancer effect. Thin Solid Films, 2009. 518(2): p. 661-667.
29. M. Onoda, Y. Abe, and K. Tada, Experimental study of culture for mouse fibroblast used conductive polymer films. Thin Solid Films, 2010. 519(3): p. 1230-1234.
30. P.D. J.GORDON BETTS, EDDIE JOHNSON, JODY E. JOHNSON, Anatomy and Physiology 2013. 405-431.
31. C.P. Ordahl and N.M. Ledouarin, 2 MYOGENIC LINEAGES WITHIN THE DEVELOPING SOMITE. Development, 1992. 114(2): p. 339-353.
32. O. Pourquie, C.M. Fan, M. Coltey, E. Hirsinger, Y. Watanabe, C. Breant, P. FrancisWest, P. Brickell, M. TessierLavigne, and N.M. LeDouarin, Lateral and axial signals involved in avian somite patterning: A role for BMP4. Cell, 1996. 84(3): p. 461-471.
33. B. Christ, C. Schmidt, R.J. Huang, J. Wilting, and B. Brand-Saberi, Segmentation of the vertebrate body. Anatomy and Embryology, 1998. 197(1): p. 1-8.
34. K.S. Yun and B. Wold, Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Current Opinion in Cell Biology, 1996. 8(6): p. 877-889.
35. E.N. Olson and W.H. Klein, BHLH FACTORS IN MUSCLE DEVELOPMENT - DEAD LINES AND COMMITMENTS, WHAT TO LEAVE IN AND WHAT TO LEAVE OUT. Genes & Development, 1994. 8(1): p. 1-8.
36. T. Nielsen, Effect of uniaxial cyclic strain on the assembly and differentiation of mammalian myogenic precursors, in Health Science and Technology. 2012, Aalborg University. p. P1~P40.
37. P. Juffer, A.D. Bakker, J. Klein-Nulend, and R.T. Jaspers, Mechanical Loading by Fluid Shear Stress of Myotube Glycocalyx Stimulates Growth Factor Expression and Nitric Oxide Production. Cell Biochemistry and Biophysics, 2014. 69(3): p. 411-419.
38. B. Liu, M.J. Qu, K.R. Qin, H. Li, Z.K. Li, B.R. Shen, and Z.L. Jiang, Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophysical Journal, 2008. 94(4): p. 1497-1507.
39. C.J. Bettinger, R. Langer, and J.T. Borenstein, Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function. Angewandte Chemie-International Edition, 2009. 48(30): p. 5406-5415.
40. C. Tamiello, A.B.C. Buskermolen, F.P.T. Baaijens, J.L.V. Broers, and C.V.C. Bouten, Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cellular and Molecular Bioengineering, 2016. 9(1): p. 12-37.
41. C.P. Pennisi, C.G. Olesen, M. de Zee, J. Rasmussen, and V. Zachar, Uniaxial Cyclic Strain Drives Assembly and Differentiation of Skeletal Myocytes. Tissue Engineering Part A, 2011. 17(19-20): p. 2543-2550.
42. G. Candiani, S.A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F.M. Montevecchi, and S. Mantero, Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. Journal of Applied Biomaterials & Biomechanics, 2010. 8(2): p. 68-75.
43. P. Heher, B. Maleiner, J. Pruller, A.H. Teuschl, J. Kollmitzer, X. Monforte, S. Wolbank, H. Redl, D. Runzler, and C. Fuchs, A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia, 2015. 24: p. 251-265.
44. S. Rangarajan, L. Madden, and N. Bursac, Use of Flow, Electrical, and Mechanical Stimulation to Promote Engineering of Striated Muscles. Annals of Biomedical Engineering, 2014. 42(7): p. 1391-1405.
45. S.H. Kim, J.-H. Moon, J.H. Kim, S.M. Jeong, and S.-H. Lee, Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device. Biomedical Engineering Letters, 2011. 1(3): p. 199.
46. D. Huh, G.A. Hamilton, and D.E. Ingber, From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011. 21(12): p. 745-754.
47. N. Kushida, O. Yamaguchi, Y. Kawashima, H. Akaihata, J. Hata, K. Ishibashi, K. Aikawa, and Y. Kojima, Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells. Bmc Urology, 2016. 16: p. 7.
48. G. Candiani, S.A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F.M. Montevecchi, and S. Mantero, Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. Journal of Applied Biomaterials and Biomechanics, 2010. 8(2): p. 68-75.
49. F. Michielin, E. Serena, P. Pavan, and N. Elvassore, Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Advances, 2015. 5(119): p. 98429-98439.
50. M.-H. Wu, H.-Y. Wang, H.-L. Liu, S.-S. Wang, Y.-T. Liu, Y.-M. Chen, S.-W. Tsai, and C.-L. Lin, Development of high-throughput perfusion-based microbioreactor platform capable of providing tunable dynamic tensile loading to cells and its application for the study of bovine articular chondrocytes. Biomedical microdevices, 2011. 13(4): p. 789-798.
51. W. Zheng, B. Jiang, D. Wang, W. Zhang, Z. Wang, and X. Jiang, A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab on a Chip, 2012. 12(18): p. 3441-3450.
52. L.C. Kloth, Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. The international journal of lower extremity wounds, 2005. 4(1): p. 23-44.
53. W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruaan, C.C. Chien, C.A. Chung, and C.W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications, 2014. 37: p. 28-36.
54. E. Serena, M. Flaibani, S. Carnio, L. Boldrin, L. Vitiello, P. De Coppi, and N. Elvassore, Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurological Research, 2008. 30(2): p. 207-214.
55. H.P. Wiesmann, M. Hartig, U. Stratmann, U. Meyer, and U. Joos, Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica Et Biophysica Acta-Molecular Cell Research, 2001. 1538(1): p. 28-37.
56. H.X. Xu, J. Zhang, Y.T. Lei, Z.Y. Han, D.M. Rong, Q. Xu, M. Zhao, and J. Tian, Low frequency pulsed electromagnetic field promotes C2C12 myoblasts proliferation via activation of MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2016. 479(1): p. 97-102.
57. G.X. Shi, M. Rouabhia, S.Y. Meng, and Z. Zhang, Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A, 2008. 84A(4): p. 1026-1037.
58. A. Zengo, C. Bassett, G. Prountzos, R. Pawluk, and A. Pilla, In vivo effects of direct current in the mandible. Journal of dental research, 1976. 55(3): p. 383-390.
59. K. Donnelly, A. Khodabukus, A. Philp, L. Deldicque, R.G. Dennis, and K. Baar, A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro. Tissue Engineering Part C-Methods, 2010. 16(4): p. 711-718.
60. H. Park, R. Bhallal, R. Saigal, M. Radisic, N. Watson, R. Langer, and G. Vunjak-Novakovic, Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(5): p. 279-287.
61. K. Donnelly, A. Khodabukus, A. Philp, L. Deldicque, R.G. Dennis, and K. Baar, A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Engineering Part C: Methods, 2010. 16(4): p. 711-718.
62. H. Jo, M. Sim, S. Kim, S. Yang, Y. Yoo, J.H. Park, T.H. Yoon, M.G. Kim, and J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomaterialia, 2017. 48: p. 100-109.
63. K. Ravikumar, G.P. Kar, S. Bose, and B. Basu, Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. Rsc Advances, 2016. 6(13): p. 10837-10845.
64. V. Hosseini, S. Gantenbein, I.A. Vizcarra, I. Schoen, and V. Vogel, Stretchable Silver Nanowire Microelectrodes for Combined Mechanical and Electrical Stimulation of Cells. Advanced Healthcare Materials, 2016. 5(16): p. 2045-2054.
65. I. Bernardeschi, F. Greco, G. Ciofani, A. Marino, V. Mattoli, B. Mazzolai, and L. Beccai, A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015. 17(2): p. 11.
66. W.-W. Hu, Y.-T. Hsu, Y.-C. Cheng, C. Li, R.-C. Ruaan, C.-C. Chien, C.-A. Chung, and C.-W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering: C, 2014. 37: p. 28-36.
67. I.C. Liao, J.B. Liu, N. Bursac, and K.W. Leong, Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cellular and Molecular Bioengineering, 2008. 1(2-3): p. 133-145.
68. X.-C. Guo, W.-W. Hu, S.H. Tan, and C.-W. Tsao, A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment. Biomedical microdevices, 2018. 20(2): p. 30.
69. Y.J. Wu, Y.H. Fang, H.C. Chi, L.C. Chang, S.Y. Chung, W.C. Huang, X.W. Wang, K.W. Lee, and S.L. Chen, Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One, 2014. 9(2): p. e88450.
70. I. Hoek, F. Tho, and W.M. Arnold, Sodium hydroxide treatment of PDMS based microfluidic devices. Lab on a Chip, 2010. 10(17): p. 2283-2285.
71. A. Forget, A.L.S. Burzava, B. Delalat, K. Vasilev, F.J. Harding, A. Blencowe, and N.H. Voelcker, Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation. Biomaterials Science, 2017. 5(4): p. 828-836.
72. C.W. Tsao, X.C. Guo, and W.W. Hu, Highly stretchable conductive polypyrrole film on a three dimensional porous polydimethylsiloxane surface fabricated by a simple soft lithography process. Rsc Advances, 2016. 6(114): p. 113344-113351.
73. M.A. Chougule, S.G. Pawar, P.R. Godse, R.N. Mulik, S. Sen, and V.B. Patil, Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanoscience Letters, 2011. 1(01): p. 6.
74. Y. Fu, Y.-S. Su, and A. Manthiram, Sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. Journal of the Electrochemical Society, 2012. 159(9): p. A1420-A1424.
75. Q.F. Lu and Z.Y. Weng, SYNTHESIS AND CHARACTERIZATION OF POLYPYRROLE NANOPARTICLES VIA UNSTIRRED POLYMERIZATION. Acta Polymerica Sinica, 2009(6): p. 513-519.
76. P.R. Bidez, S. Li, A.G. MacDiarmid, E.C. Venancio, Y. Wei, and P.I. Lelkes, Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. Journal of Biomaterials Science, Polymer Edition, 2006. 17(1-2): p. 199-212.
77. A. Kumar, R. Murphy, P. Robinson, L. Wei, and A.M. Boriek, Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappa B transcription factor. Faseb Journal, 2004. 18(13): p. 1524-1535.
78. J.S. Otis, T.J. Burkholder, and G.K. Pavlath, Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Experimental Cell Research, 2005. 310(2): p. 417-425.
79. H. Bai, C.D. McCaig, J.V. Forrester, and M. Zhao, DC electric fields induce distinct preangiogenic responses in microvascular and macrovascular cells. Arteriosclerosis, thrombosis, and vascular biology, 2004. 24(7): p. 1234-1239.
80. A.M. Goldyn, B.A. Rioja, J.P. Spatz, C. Ballestrem, and R. Kemkemer, Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. Journal of Cell Science, 2009. 122(20): p. 3644-3651.
81. A.M. Greiner, H. Chen, J.P. Spatz, and R. Kemkemer, Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells. Plos One, 2013. 8(10): p. 9.
82. Y. Feng, X.-Y. Tian, P. Sun, Z.-P. Cheng, and R.-F. Shi, Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts. Cells Tissues Organs, 2018: p. 1-8.
83. J. Liu, J. Liu, J. Mao, X. Yuan, Z. Lin, and Y. Li, Caspase?3?mediated cyclic stretch?induced myoblast apoptosis via a Fas/FasL?independent signaling pathway during myogenesis. Journal of cellular biochemistry, 2009. 107(4): p. 834-844.
84. T.D. Brutsaert, T.P. Gavin, Z. Fu, E.C. Breen, K. Tang, O. Mathieu-Costello, and P.D. Wagner, Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation. BMC physiology, 2002. 2(1): p. 8.
85. C. Sassoli, A. Frati, A. Tani, G. Anderloni, F. Pierucci, F. Matteini, F. Chellini, S.Z. Orlandini, L. Formigli, and E. Meacci, Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation. Plos One, 2014. 9(9): p. 10.
86. X. Yuan, D.E. Arkonac, P.-h.G. Chao, and G. Vunjak-Novakovic, Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific reports, 2014. 4: p. 3674.
87. H. Jo, M. Sim, S. Kim, S. Yang, Y. Yoo, J.-H. Park, T.H. Yoon, M.-G. Kim, and J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta biomaterialia, 2017. 48: p. 100-109.
88. K.-A. Chang, J.W. Kim, J. a Kim, S. Lee, S. Kim, W.H. Suh, H.-S. Kim, S. Kwon, S.J. Kim, and Y.-H. Suh, Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS One, 2011. 6(4): p. e18738.
89. E. Hurtado, V. Cilleros, L. Nadal, A. Simo, T. Obis, N. Garcia, M.M. Santafe, M. Tomas, K. Halievski, C.L. Jordan, M.A. Lanuza, and J. Tomas, Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKC alpha and cPKC beta I. Frontiers in Molecular Neuroscience, 2017. 10: p. 22.
90. H. Fujita, T. Nedachi, and M. Kanzaki, Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Experimental Cell Research, 2007. 313(9): p. 1853-1865.
91. S. Ostrovidov, S. Ahadian, J. Ramon-Azcon, V. Hosseini, T. Fujie, S.P. Parthiban, H. Shiku, T. Matsue, H. Kaji, M. Ramalingam, H. Bae, and A. Khademhosseini, Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017. 11(2): p. 582-595.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2018-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明