博碩士論文 105324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.119.139.50
姓名 徐彩峰(Tsai-Feng Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗
相關論文
★ 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究★ 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究
★ 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析★ 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析
★ 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析★ 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技發展,大氣中溫室氣體濃度逐年增加,因此越來越多比例的太陽輻射無法逸散出去,造成全球平均溫度年年升高,異常的年均溫會造成極地融冰,氣候變遷以及傳染病的增加,因此,如何減少溫室氣體的排放儼然成為全球各國該共同探討的議題。
本研究為氣化合成氣經富氧燃燒後之雙塔變壓吸附程序二氧化碳純化實驗。合成氣經由與氧氣燃燒及除水後,會產出濃度95%以上的二氧化碳氣體,因此本實驗進料氣體組成採用95%二氧化碳與5%氮氣。吸附劑選擇方面,藉由比較不同吸附劑對二氧化碳與氮氣的吸附量及選擇率,選用UOP 13X 沸石作為吸附劑。將吸附劑填入吸附塔進行突破曲線與脫附曲線實驗,藉由改變不同溫度與壓力探討不同變因對突破曲線與脫附曲線的影響,以此為基礎粗估步驟所需時間,進而以雙塔六步驟變壓吸附程序來純化二氧化碳,並探討如操作溫度、進料壓力、逆向減壓壓力、沖洗量對進料量之比值、步驟時間等變因對其各個出口回收率、濃度的影響,併計算產率和能耗,研究最適化的操作條件,以獲得高純度二氧化碳。變因探討後之最佳操作條件為進料壓力3.45 atm、逆向減壓壓力0.48 atm、塔溫度358K、進料加壓/逆向減壓步驟時間150秒、高壓吸附/低壓沖洗步驟時間20秒、同向減壓/Idle步驟時間250秒,沖洗量對進料量之比值0.105。最佳塔底二氧化碳純度為99.94%,回收率42.84%,能耗0.304 GJ/tonne CO2,產率0.136 kg CO2/kg adsorbent.h。
摘要(英) With the industry development, the concentration of greenhouse gas increases year by year, and thus more and more solar radiation is restrained in the atmosphere, resulting in the increase of average global temperature gradually. The abnormal average global temperature will cause melting ice in polar region, climate change and the increased spreading speed of infectious diseases. Consequently, how to reduce the emission of greenhouse gas has become an important issue all over the world.
This research is the experimental study of concentrating high purity CO2 from syngas after oxy-fuel combustion by dual-bed pressure swing adsorption process. Syngas after oxy-fuel combustion and dehydration will produce CO2 with purity more than 95%, and therefore the composition of feed gas used in the process was assumed 95% CO2, with 5% N2 balanced. We chose UOP 13X zeolite as the best adsorbent that will be used in the dual-bed PSA process according to the adsorption capacity and selectivity of CO2 over N2 comparing to other zeolites.
The breakthrough and desorption curves were discussed by changing different feed flow rate and temperature. Next the carbon dioxide was purified by dual-bed six-step pressure swing adsorption process. After exploring the effects of variables such as temperature, feed pressure, vacuum pressure, purge to feed ration, and step time on performance of pressure swing adsorption process, we found the best operating conditions for obtaining high purity carbon dioxide among our experiments. The best operating conditions are feed pressure 3.45 atm, countercurrent depressurization pressure 0.48 atm, temperature 358 K, feed pressurization / countercurrent depressurization step time 150 s, adsorption / purge step time 20 s, cocurrent depressurization / idle step time 250 s, purge to feed ratio 0.105. The experimental results of best conditions are 99.94% purity and 42.84% recovery of carbon dioxide at bottom product, energy consumption 0.304 GJ/tonne CO2 and productivity 0.136 kg CO2/kg adsorbent.h。
關鍵字(中) ★ 變壓吸附
★ 二氧化碳
★ 雙塔
★ 合成氣
關鍵字(英) ★ Pressure swing adsorption
★ Carbon dioxide
★ dual-bed
★ syngas
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 X
表目錄 XV
第一章、緒論 1
第二章、吸附簡介與文獻回顧 8
2-1 吸附之簡介 8
2-1-1 吸附基本原理 8
2-1-2 吸附劑及其選擇率參數 11
2-1-3 等溫平衡吸附曲線 13
2-1-4 PSA 程序之發展與改進 15
2-1-5 突破曲線與脫附曲線 20
2-2 文獻回顧 23
第三章、氣化合成氣經富氧燃燒與除水後之變壓吸附程序實驗設備及方法 26
3-1 變壓吸附程序吸附劑選擇 26
3-2 突破曲線實驗與脫附曲線實驗 32
3-2-1 實驗裝置、各部分規格及特性 32
3-2-2 實驗步驟 38
3-3 變壓吸附實驗 39
3-3-1 變壓吸附實驗裝置、各部分規格及特性 44
3-3-2 實驗步驟 47
第四章、氣化合成氣經富氧燃燒與除水後之變壓吸附程序實驗結果與討論 50
4-1 吸附劑選擇計算與討論 50
4-2 突破曲線實驗與脫附曲線實驗結果與討論 57
4-2-1 進料體積流率對突破曲線的影響 60
4-2-2 操作溫度對突破曲線的影響 62
4-2-3 進料體積流率對脫附曲線的影響 64
4-2-4 操作溫度對脫附曲線的影響 66
4-3 變壓吸附實驗結果與討論 68
4-3-1 逆向減壓壓力對雙塔六步驟變壓吸附程序之影響 71
4-3-2 進料加壓/逆向減壓步驟時間對雙塔六步驟變壓吸附程序之影響75
4-3-3 同向減壓/閒置步驟時間對雙塔六步驟變壓吸附程序之影響 79
4-3-4 進料壓力對雙塔六步驟變壓吸附程序之影響 83
4-3-5 高壓吸附/低壓沖洗步驟時間對雙塔六步驟變壓吸附程序之影響87
4-3-6 操作溫度對雙塔六步驟變壓吸附程序之影響 91
4-3-7 P/F ratio對雙塔六步驟變壓吸附程序之影響 95
第五章、結論 100
參考文獻 103
附錄A 變壓吸附程序詳細數據 107
參考文獻 [1] ESRL, Global Monitoring Division, Earth System Research Laboratory, https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_full.html. [Accessed 2018].
[2] 台灣電力公司,歷年發電量占比, 2018, https://www.taipower.com.tw/tc/chart/a01_電力供需資訊_電源開發規劃_歷年發電量及結構.html.
[3] EIA, International Energy Outlook, 2017, https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf.
[4] AEO, Annual Energy Outlook, 2018, https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf.
[5] 行政院環境保護署, 2016年中華民國國家溫室氣體排放清冊報告, 2018, http://unfccc.saveoursky.org.tw/2016nir/index.php.
[6] D. Y. C. Leung, G. Caramanna, M. M. Maroro-Valer, An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies, Renewable and Sustainable Energy Reviews, vol. 39, p. 426-443, 2014.
[7] L. Zheng, Oxy-fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, Illinois, Woodhead Publishing, 2011.
[8] Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants, 13th International Conference on Greenhouse Gas Control Technologies, Lausanne, 2016.
[9] P. Luis, Use of Monoethanolamine (MEA) for CO2 Capture in A Global Scenario, Desalination, vol. 380, p. 93-99, 2016.
[10] D. M. Todd, Gas Turbine Improvements Enhance IGCC Viability, Gasification Technologies Conference, San Francisco, 2000.
[11] L. Jiang, A. P. Roskilly, R. Z. Wang, Performance Exploration of Temperature Swing Adsorption Technology for Carbon Dioxide Capture, Energy Conversion and Management, vol. 165, p. 396-404, 2018.
[12] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsirption Processes, Carnegie Mellon University Press, Pittsburgh, 2010.
[13] A. K. Rajagopalan, A. M. Avila and A. Rajendran, Do Adsorbent Screening Metrics Predict Process Performance? A Process Optimisation Based Study for Post-combustion Capture of CO2, International Journal of Greenhouse Gas Control, vol. 46, p. 76-85, 2016.
[14] C. Skarstrom, Esso Research and Engineering Company, US Patent 2944627, 1960.
[15] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption Science and Technology, Kluwer Academic Publishers, 1988.
[16] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee , H. K. Song, B. K. Na, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Chemical Engineering, vol 20, p. 617-623, 2003.
[17] W. J. Thomas, D. Barry, Adsorption Technology and Design, Butterworth-Heinemann, Oxford, 1998.
[18] R. T. Yang, Gas Seperation by Adsorption Process, Imperial College Press, London, 1997.
[19] D. Daniel, M. P. G. De, Process for Separating A Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
[20] W. D. Marsh, F. S. Pramuk, R. C. Hoke, C. W. Skarstrom, Pressure Equalization Depressuring in Heatless Adsorption, Annandale, Exxon Research Engineering Company, 1964.
[21] J. Park, R. H. Kang, J. W. Lee, Efficient Pressure Swing Adsorption for Improving H2 Recovery in Precombustion CO2 Capture, Korean Journal of Chemical Engineering, vol. 34, p. 1763-1773, 2017.
[22] B. K. Na, H. L. Lee, K. K. Koo, H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, p. 5498-5503, 2002.
[23] K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, p. 293-299, 1983.
[24] J. J. Collins, Air Separation by Adsorption, US Patent 4026680, 1975.
[25] Y. H. Kim, J. J. Kim, C. H. Lee, Adsorptive Cyclic Purification Process for CO2 Mixtures Captured from Coal Power Plants, American Institute of Chemical Engineers, vol. 63, p. 1051-1063, 2017.
[26] Z. Liu, L. Wang, X. Kong, P. Li, J. Yu, A. E. Rodrigues, Onsite CO2 Capture from Flue Gas by An Adsorption Process in A Coal-fired Power Plant, Industrial & Engineering Chemistry Research, vol. 51, p. 7355-7363, 2012.
[27] E. R. A. Fuderer, Selective Adsorption Process, US Patent 3986849, 1976.
[28] M. Yavary, H. A. Ebrahim, C. Falamaki, The Effect of Number of Pressure Equalization Steps on the Performance of Pressure Swing Adsorption Process, Chemical Engineering and Processing, vol. 87, p. 35-44, 2015.
[29] H. Yan, Q. Fu, Y. Zhou, D Li, D. Zhang, CO2 Capture from Dry Flue Gas by Pressure Vacuum Swing Adsorption: A Systematic Simulation and Optimization, International Journal of Greenhouse Gas Control, vol. 51, p. 1-10, 2016.
[30] N. Shigaki, Y. Mogi, T. Haraoka, I. Sumi, Reduction of Electric Power Consumption in CO2-PSA with Zeolite 13X Adsorbent, Energies, vol. 11, 2018.
[31] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley, Y. Zhai, Strategies for CO2 Capture from Different CO2 Emission Sources by Vacuum Swing Adsorption Technology, Chinese Journal of Chemical Engineering, vol. 24, p. 460-467, 2016.
[32] H. H. Heck, M. L. Hall, R. Santos, M. M. Tomadakis, Pressure Swing Adsorption Separation of H2S/CO2/CH4 Gas Mixtures with Molecular Sieves 4A, 5A, and 13X, Separation Science and Technology, vol. 53, p. 1490-1497, 2018.
[33] M. Khurana, S. Farooq, Simulation and Optimization of a 6-step Dual-reflux VSA Cycle for Post-combustion CO2 Capture, Chemical Engineering Science, vol. 152, p. 507-515, 2016.
[34] K. T. Leperi, R. Q. Snurr, F. You, Optimization of Two-stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture, Industrial & Engineering Chemistry Research, vol. 55, p. 3338-3350, 2016.
[35] D. Li, Y. Zhou, Y. Shen, W. Sun, Q. Fu, H. Yan, D. Zhang, Experiment and Simulation for Separating CO2/N2 by Dual-reflux Pressure Swing Adsorption Process, Chemical Engineering Journal, vol. 297, p. 315-324, 2016.
[36] J. Ling, A. Ntiamoah, P. Xiao, P. A. Webley, Y. Zhai, Effects of Feed Gas Concentration, Temperature and Process Parameters on Vacuum Swing Adsorption Performance for CO2 Capture, Chemical Engineering Journal, vol. 265, p. 47-57, 2015.
[37] Y. F. Shi, X. J. Liu, Y. Guo, M. A. Kalbassi, Y. S. Liu, Desorption Characteristics of H2O and CO2 from Alumina F200 Under Different Feed/Purge Pressure Ratios and Regeneration Temperatures, Adsorption Journal of the International Adsorption Society, vol. 23, p. 999-1011, 2017.
[38] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學, 民國104年.
[39] R. Kumar, Pressure Swing Adsorption Process: Performance Optimum and Adsorbent Selection, Industrial & Engineering Chemistry Research, vol. 33, p. 1600-1605, 1994.
[40] 吳碧卿, 製備矽膠固著聚苯胺吸附劑及吸脫附試驗與氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗, 國立中央大學, 民國106年.
[41] K. Kotoh, M. Tanaka, T. Sakamoto, S. Takashima, T. Tsuge, Y. Asakura, T. Uda, T. Sugiyama, Overshooting Breakthrough Curves Formed in Pressure Swing Adsorption Process for Hydrogen Isotope Separation, Fusion Science and Technology, vol. 56, p. 173-178, 2009.
[42] P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter, A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit, Seperation and Purification Technology, vol. 193, p. 91-102, 2018.
[43] A. Golmakani, S. Fatemi, J. Tamnanloo, CO2 Capture from The Tail Gas of Hydrogen Puri?cation Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, p. 334-350, 2016.
[44] Y. A. Cengel, M. A. Boles, Thermodynamics : An Engineering Approach, 4th Edtion, McGraw-Hill Education, New York, 2004.
[45] J. M. Smith, H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th Edtion, McGraw-Hill Education, New York, 1987.
[46] S. U. Rege, R. T. Yang, A Simple Parameter for Selecting An Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36, p. 3355-3365, 2001.
[47] K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho, R. T. Yang, Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption, Industrial & Engineering Chemistry Research, vol. 34, p. 591-598, 1995.
指導教授 周正堂 楊閎舜(Cheng-Tung Chou Hong-Shun Yang) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明