博碩士論文 105324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.116.51.117
姓名 葉修良(Hsiu-Liang Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構
相關論文
★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測★ 以第一原理計算探討吸附銅團簇和銅鐵團簇的二氧化鈦對甲醇解離機制的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化鈦作為鋰離子負極材料研究於近年中獲得越來越多關注,其原因為二氧化鈦具有成本低、無毒性、質量輕並具備高理論電容量値。然而於實際應用面上,二氧化鈦卻時常受限於低電導率與有限的鋰離子擴散表現。先前的實驗團隊研究發現透過「氫化程序」處理二氧化鈦導入氧空缺於結構中可有效改善其作為鋰離子負極材料的表現性。
本研究聚焦於三種常被作為鋰離子電池負極材料的二氧化鈦晶型:銳鈦礦、金紅石與單斜晶系二氧化鈦,基於密度泛涵理論以第一計算原理計算進行稀薄濃度狀態下,氧空缺對於鋰嵌入與擴散表現性影響。在三種晶相中,分別將鋰置於結構中潛在嵌入位置中以尋找其最穩定的嵌入位點。鋰於結構中擴散移動路徑則由其穩定嵌入位點至下一鄰近穩定位點以 CINEB(Climb Image Nudged Elastic Band)法計算而得。並採相同手法檢驗銳鈦礦、金紅石與單斜晶系二氧化鈦及其具氧空缺結構,以比較氧缺對於鋰在結構中嵌入與擴散行為的影響。此外,三種不同二氧化鈦及其具氧空缺結構之電子性質也進行計算分析。各項結果顯示在三種晶相中,單斜晶相二氧化鈦或許是最適合氫化程序產生氧空缺以作為鋰離子負極材料的選擇,因其結構導入氧空缺後鋰嵌入能最穩定且擴散能障上升幅度最低,電子結構分析上同樣觀察到帶隙下降的現象。
摘要(英) Titanium dioxide has recently attracted focus as a potential anode material in lithium-ion rechargeable batteries (LiBs) because of the low cost, abundant source, light weight, safety, and high theoretical capacitance. However, the practical application of TiO2 is restricted to its poor electronic conductivity and inefficient lithium diffusion. Previous studies show “hydrogenation processes” can remove the oxygen atoms from TiO2 and create oxygen vacancies, which may improve electronic conductivity and facilitate lithium mass transport to enhance anode material
performances.
In this work, three most common polymorphs of TiO2 as lithium-ion battery anode materials: anatase, rutile and TiO2(B) have been modeled and first-principles study based on density functional theory (DFT) calculations have been employed to investigate the intercalation and diffusion behavior of lithium in TiO2 with/without an oxygen vacancy at dilute lithium concentrations. Total energies of possible intercalation sites were first calculated to find out the favorable site among the three phases. Furthermore, all lithium diffusion pathways from
one stable site to another stable site were examined by climbing image nudged elastic band method. To compare the effect of oxygen vacancy on lithium diffusion mechanism, energy
barriers of pristine TiO2 and oxygen-defective structures have been calculated. In addition, the electronic structure of TiO2 with oxygen vacancy was calculated in comparison with pristine TiO2. The results indicate that among three polymorphs, TiO2(B) may the better choice for
oxygen vacancy process because its intercalation energy is the most stable one, it has lower diffusion energy barrier change, and also show narrowed band gap after oxygen vacancy introduction.
關鍵字(中) ★ 第一原理計算
★ 氧空缺
★ 鋰嵌入
★ 鋰擴散
★ 二氧化鈦
關鍵字(英) ★ First-Principles
★ Oxygen vacancy
★ Lithium intercalation
★ Lithium diffusion
★ Titanium dioxide
論文目次 中文摘要 ............................................... i

英文摘要 .............................................. ii

致謝 ................................................ iii

目錄 ................................................. iv

圖目錄 .............................................. vii

表目錄 ............................................... ix

第一章 緒論 .......................................... 1

1-1 前言 ........................................... 1

1-2 鋰離子電池組成 .................................. 2

1-3 常見鋰離子正極、負極材料 ......................... 4

1-3-1 正極材料 (Cathode) ........................... 4

1-3-2 負極材料 (Anode) ............................. 4

1-4 研究動機 ........................................ 4

1-5 文獻回顧(二氧化鈦作鋰離子電池負極材料) ............. 5

1-5-1 二氧化鈦負極材料 .............................. 5

1-5-2 金紅石(Rutile) ............................... 6

1-5-3 銳鈦礦(Anatase) .............................. 8

1-5-4 單斜晶系二氧化鈦(TiO2(B)) .................... 10

1-5-5 二氧化鈦作負極材料實驗文獻探討 ................ 11

1-5-6 二氧化鈦作負極材料理論計算探討 ................ 15

第二章 理論方法 ...................................... 20

2-1 第一計算原理(First-Principles calcualtion) ...... 20

2-2 密度泛涵理論(Density Functional Theory) ......... 20

2-3 Hohenberg-Kohn Theorem ......................... 21

2-4 Kohn-Sham 方程 ................................. 22

2-5 局部密度近似(Local Density Approximation) ....... 23

2-6 廣義梯度近似(Generalized Gradient Approximation). 26

2-7 贗勢(pseudopotential)與平面波(plane wave) ....... 27

2-8 Bloch′s theorem & k-points ..................... 28

2-9 結構優化 (Geometry Optimization) ................ 29

2-10 GGA+U 近似修正(Hubbard-like U) ................. 29

2-11 可視化軟體 Material Studio、CASTEP ............. 30

第三章 計算細節 ...................................... 31

3-1 模型建構 ....................................... 33

3-1-1 二氧化鈦原始結構(Pristine TiO2) .............. 33

3-1-2 具氧空缺二氧化鈦結構(Oxygen-Defective TiO2) .. 35

3-2 鋰離子嵌入二氧化鈦及其具氧空缺結構之位點 .......... 36

3-3 鋰離子於二氧化鈦擴散路徑 ........................ 38

第四章 計算結果與討論 ................................ 40

4-1 單位晶胞晶格參數(Unit cell latice parameter) ... 40

4-2 具氧空缺之二氧化鈦 ............................. 41

4-3 鋰離子嵌入能 ................................... 42

4-3-1 鋰離子嵌入 Pristine TiO2 結構 ............... 42

4-3-2 鋰離子嵌入 Oxygen-Defective TiO2 結構 ....... 43

4-4 鋰離子擴散路徑 ................................. 45

4-4-1 鋰離子於 Pristine TiO2 擴散路徑 ............. 45

4-4-2 鋰離子於 Oxygen-Defective TiO2 擴散路徑...... 46

4-5 電子結構分析(Electronic structure) ............. 49

第五章 結論 ......................................... 51

參考資料 ............................................ 52

附錄一、鋰離子擴散路徑位置P1結構優化圖 ................ 59

附錄二、鋰離子擴散路徑位置P7結構優話圖 ................ 60

附錄三、U値修正對於Anatase帶隙値修正對應關係圖 ........ 61

附錄四、 二氧化鈦及其具氧空缺結構與DOS分析圖 .......... 62
參考文獻 [1] Poizot P, Dolhem F. “Clean Energy New Deal for a Sustainable World: from Non-CO2 Generating Energy Sources to Greener Electrochemical Storage Devices”, Energy &
Environmental Science, Vol 4, 2003-19, 2011.
[2] Scrosati B, Garche J. “Lithium Batteries: Status, Prospects and Future”, Journal of Power Sources, Vol 195, 2419-30, 2010.
[3] Dunn B, Kamath H, Tarascon J-M. “Electrical Energy Storage for the Grid: A Battery of Choices”, Science, Vol 334, 928-35, 2011.
[4] Tarascon J-M, Armand M. “Issues and Challenges Facing Rechargeable Lithium Batteries”, Nature, Vol 414, 359-67, 2001.
[5] Tarascon J-M, Armand M. "Issues and Challenges Facing Rechargeable Lithium Batteries". Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review
Articles from Nature Publishing Group, p. 171-9, World Scientific; 2011
[6] Nishi Y. “The Dawn of Lithium-Ion Batteries”, The Electrochemical Society Interface, Vol 25, 71-4, 2016.
[7] Yamaki J-i, Tobishima S-i, Hayashi K, Saito K, Nemoto Y, Arakawa M. “A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte”, Journal of Power Sources, Vol 74, 219-27, 1998.
[8] Besenhard J, Hess M, Komenda P. “Dimensionally Stable Li-Alloy Electrodes for Secondary Batteries”, Solid State Ionics, Vol 40, 525-9, 1990.
[9] Nitta N, Wu F, Lee JT, Yushin G. “Li-Ion Battery Materials: Present and Future”, Materials Today, Vol 18, 252-64, 2015.
[10] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. “Challenges in the Development of Advanced Li-Ion Batteries: A Review”, Energy & Environmental Science, Vol 4, 3243-62, 2011.
[11] Jiang C, Wei M, Qi Z, Kudo T, Honma I, Zhou H. “Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase TiO2
Electrode”, Journal of Power Sources, Vol 166, 239-43, 2007.
[12] Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, et al. “Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review”, Journal of Power Sources, Vol 192, 588-98, 2009.
[13] Ren H, Yu R, Wang J, Jin Q, Yang M, Mao D, et al. “Multishelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries”, Nano Letters, Vol 14, 6679-84, 2014.
[14] Liu H, Li W, Shen D, Zhao D, Wang G. “Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes”, Journal
of the American Chemical Society, Vol 137, 13161-6, 2015.
[15] Zhang Z, Zhou Z, Nie S, Wang H, Peng H, Li G, et al. “Flower-Like Hydrogenated TiO2(B) Nanostructures as Anode Materials for High-Performance Lithium Ion Batteries”, Journal of Power Sources, Vol 267, 388-93, 2014.
[16] Zheng J, Liu Y, Ji G, Zhang P, Cao X, Wang B, et al. “Hydrogenated Oxygen-Deficient Blue Anatase as Anode for High-Performance Lithium Batteries”, ACS applied materials & interfaces, Vol 7, 23431-8, 2015.
[17] Lu Z, Yip CT, Wang L, Huang H, Zhou L. “Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries”, ChemPlusChem, Vol 77, 991-1000, 2012.
[18] Hoffmann MR, Martin ST, Choi W, Bahnemann DW. “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews, Vol 95, 69-96, 1995.
[19] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, Vol 293, 269-71, 2001.
[20] O′regan B, Grätzel M. “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, Vol 353, 737, 1991.
[21] Bach U, Lupo D, Comte P, Moser J, Weissörtel F, Salbeck J, et al. “Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature, Vol 395, 583, 1998.
[22] Horn M, Schwebdtfeger C, Meagher E. “Refinement of the Structure of Anatase at Several Temperatures”, Zeitschrift für Kristallographie-Crystalline Materials, Vol 136, 273-81, 1972.
[23] Hu YS, Kienle L, Guo YG, Maier J. “High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2”, Advanced Materials, Vol 18, 1421-6, 2006.
[24] Kavan L, Grätzel M, Gilbert S, Klemenz C, Scheel H. “Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase”, Journal of the American Chemical Society, Vol 118, 6716-23, 1996.
[25] Marchand R, Brohan L, Tournoux M. “TiO2 (B) a New Form of Titanium Dioxide and the Potassium Octatitanate K2Ti8O17”, Materials Research Bulletin, Vol 15, 1129-33, 1980.
[26] Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M. “Pseudocapacitive Lithium Storage in TiO2(B)”, Chemistry of Materials, Vol 17, 1248-55, 2005.
[27] Liu S, Wang Z, Yu C, Wu HB, Wang G, Dong Q, et al. “A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life”, Advanced Materials, Vol 25, 3462-7, 2013.
[28] Arrouvel C, Parker SC, Islam MS. “Lithium Insertion and Transport in the TiO2−B Anode Material: A Computational Study”, Chemistry of Materials, Vol 21, 4778-83, 2009.
[29] Liu S, Jia H, Han L, Wang J, Gao P, Xu D, et al. “Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries”, Advanced Materials, Vol 24, 3201-4, 2012.
[30] Wagemaker M, Borghols WJ, Mulder FM. “Large Impact of Particle Size on Insertion Reactions. A Case for Anatase LixTiO2”, Journal of the American Chemical Society, Vol 129, 4323-7, 2007.
[31] Han C, Yang D, Yang Y, Jiang B, He Y, Wang M, et al. “Hollow Titanium Dioxide Spheres as Anode Material for Lithium Ion Battery with Largely Improved Rate Stability and Cycle Performance by Suppressing the Formation of Solid Electrolyte Interface Layer”, Journal of Materials Chemistry A, Vol 3, 13340-9, 2015.
[32] Armstrong AR, Armstrong G, Canales J, García R, Bruce PG. “Lithium‐Ion Intercalation into TiO2‐B Nanowires”, Advanced Materials, Vol 17, 862-5, 2005.
[33] Kim K-T, Yu C-Y, Kim S-J, Sun Y-K, Myung S-T. “Carbon-Coated Anatase Titania as a
High Rate Anode for Lithium Batteries”, Journal of Power Sources, Vol 281, 362-9, 2015.
[34] Deng D, Kim MG, Lee JY, Cho J. “Green Energy Storage Materials: Nanostructured TiO2
and Sn-Based Anodes for Lithium-Ion Batteries”, Energy & Environmental Science, Vol 2, 818- 37, 2009.
[35] Etacheri V, Yourey JE, Bartlett BM. “Chemically Bonded TiO2–Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries”, Acs Nano, Vol 8, 1491-9, 2014.
[36] Qiu J, Li S, Gray E, Liu H, Gu Q-F, Sun C, et al. “Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries”, The Journal of Physical Chemistry C, Vol 118, 8824-30, 2014.
[37] Koudriachova MV, Harrison NM, de Leeuw SW. “Density-Functional Simulations of Lithium Intercalation in Rutile”, Physical Review B, Vol 65, 235423, 2002.
[38] Morgan BJ, Watson GW. “GGA+U Description of Lithium Intercalation into Anatase TiO2”, Physical Review B, Vol 82, 144119, 2010.
[39] Legrain F, Malyi O, Manzhos S. “Insertion Energetics of Lithium, Sodium, and Magnesium in Crystalline and Amorphous Titanium Dioxide: A Comparative First-Principles Study”, Journal of Power Sources, Vol 278, 197-202, 2015.
[40] Dawson J, Robertson J. “Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B)”, The Journal of Physical Chemistry C, Vol 120, 22910-7, 2016.
[41] Clark S, Robertson J, Lany S, Zunger A. “Intrinsic Defects in ZnO Calculated by Screened Exchange and Hybrid Density Functionals”, Physical Review B, Vol 81, 115311, 2010.
[42] Clark SJ, Robertson J. “Screened Exchange Density Functional Applied to Solids”, Physical Review B, Vol 82, 085208, 2010.
[43] Persson C, Ferreira da Silva A. “Strong Polaronic Effects on Rutile TiO2 Electronic Band Edges”, Applied Physics Letters, Vol 86, 231912, 2005.
[44] Hu Z, Metiu H. “Choice of U for DFT+ U Calculations for Titanium Oxides”, The Journal of Physical Chemistry C, Vol 115, 5841-5, 2011.
[45] German E, Faccio R, Mombrú AW. “A DFT+ U Study on Structural, Electronic, Vibrational and Thermodynamic Properties of TiO2 Polymorphs and Hydrogen Titanate: Tuning the Hubbard ‘U-term’”, Journal of Physics Communications, Vol 1, 055006, 2017.
[46] Deskins NA, Dupuis M. “Electron Transport via Polaron Hopping in Bulk TiO2 : A Density Functional Theory Characterization”, Physical Review B, Vol 75, 195212, 2007.
[47] Kong L-M, Zhu B-L, Pang X-Y, Wang G-C. “First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries”, Acta Physico-Chimica Sinica, Vol 32, 656-64, 2016.
[48] Sushko PV, Rosso KM, Abarenkov IV. “Interaction of Intercalated Li+ Ions with Oxygen Vacancies in Rutile TiO2”, ECS Transactions, Vol 28, 299-306, 2010.
[49] Hohenberg P, Kohn W. “Inhomogeneous Electron Gas”, Physical Review, Vol 136, B864, 1964.
[50] Kohn W, Sham L. “Quantum Density Oscillations in an Inhomogeneous Electron Gas”, Physical Review, Vol 137, A1697, 1965.
[51] Blöchl PE. “Projector Augmented-Wave Method”, Physical Review B, Vol 50, 17953, 1994.
[52] Anisimov VI, Zaanen J, Andersen OK. “Band Theory and Mott Insulators: Hubbard U Instead of Stoner I”, Physical Review B, Vol 44, 943, 1991.
[53] Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, et al. "First Principles Methods Using CASTEP", Zeitschrift für Kristallographie – Crystalline Materials, Vol 220, 567, 2005.
[54] Burdett JK, Hughbanks T, Miller GJ, Richardson Jr JW, Smith JV. “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, Journal of the American Chemical Society, Vol 109, 3639-46, 1987.
[55] Feist TP, Davies PK. “The Soft Chemical Synthesis of TiO2(B) from Layered Titanates”, Journal of Solid State Chemistry, Vol 101, 275-95, 1992.
[56] Panduwinata D, Gale JD. “A First Principles Investigation of Lithium Intercalation in TiO2-B”, Journal of Materials Chemistry, Vol 19, 3931-40, 2009.
[57] Morgan BJ, Madden PA. “Lithium Intercalation into TiO2(B): A Comparison of LDA,GGA, and GGA+U Density Functional Calculations”, Physical Review B, Vol 86, 035147,2012.
[58] Armstrong AR, Arrouvel C, Gentili V, Parker SC, Islam MS, Bruce PG. “Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study”, Chemistry of Materials, Vol 22, 6426-32, 2010.
[59] Koudriachova MV, Harrison NM, de Leeuw SW. “Diffusion of Li-Ions in Rutile. An ab Initio Study”, Solid State Ionics, Vol 157, 35-8, 2003.
[60] Henkelman G, Uberuaga BP, Jónsson H. “A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths”, The Journal of chemical physics, Vol
113, 9901-4, 2000.
[61] Zachau-Christiansen B, West K, Jacobsen T, Atlung S. “Lithium Insertion in Different TiO2 Modifications”, Solid State Ionics, Vol 28, 1176-82, 1988.
[62] Meng Q, Wang T, Liu E, Ma X, Ge Q, Gong J. “Understanding Electronic and Optical Properties of Anatase TiO2 Photocatalysts Co-Doped with Nitrogen and Transition Metals”, Physical Chemistry Chemical Physics, Vol 15, 9549-61, 2013.
[63] Gao H, Li X, Lv J, Liu G. “Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2 (001) Nanocomposites”, The Journal of Physical Chemistry C, Vol 117, 16022-7, 2013.
[64] Betz G, Tributsch H, Marchand R. “Hydrogen Insertion (Intercalation) and Light Induced Proton Exchange at TiO2(B)-Electrodes”, Journal of Applied Electrochemistry, Vol 14, 315-22,1984.
指導教授 謝介銘 張博凱(Chieh-Ming Hsieh Bor Kae Chang) 審核日期 2018-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明