博碩士論文 105324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.221.146.223
姓名 金浩宇(Hao-Yu Chin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鋯金屬有機框架結構之二氧化碳吸附性質探討
(Adsorption of carbon dioxide in defective zirconium-based metal-organic frameworks)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) UiO系列結構是鋯金屬有機框架結構中較為新穎的一類材料,具有優異的熱穩定性、化學穩定性、高機械性質以及高比表面積等特性,使其成為氣體貯存以及氣體分離研究之熱門材料。UiO-66是UiO系列中的一員,其結構以鋯金屬離子做為中心,搭配對苯二甲酸(benzene-1,4-dicarboxylic acid)作為有機配位基。研究顯示,於UiO-66製程中加入酸性改質劑(acid-modulator)可以誘導其晶體結構中鍵連缺陷(missing-linker defect)的產生,此結構性缺陷可以增加材料的孔洞性(porosity)以及自由體積(free volume),進而提升其氣體吸附性質。
本研究使用蒙地卡羅法(Monte Carlo simulations)討論完美結晶以及含鍵連缺陷之UiO-66結構的二氧化碳氣體吸附機制。結果顯示,於高壓下,材料中的自由體積為影響氣體吸附性質之主因,然而低壓下,氣體吸附行為卻是由等溫吸附熱(isosteric heat)所主導,使得高壓下完美結晶之UiO-66擁有最低之二氧化碳吸附量,然而在低壓下,卻有出最好之吸附表現。此外,藉由密度泛函理論(density functional theory)計算結構對於單一氣體分子之吸附能(adsorption energy),用以輔助解釋低壓下之氣體吸附行為。實驗上,我們以甲酸(formic acid)作為改質劑,合成不同缺陷程度的改質樣品,並以熱重分析(thermogravimetric analysis)量化樣品中的缺陷,二氧化碳吸附之實驗結果與模擬計算上有相同的趨勢,為此我們確信本研究以模擬作為研究手法對氣體吸附機制的解釋。此研究之特色在於結合實驗與模擬之手法,系統性地探討鋯金屬有機框架結構對於二氧化碳氣體吸附之行為與機制。
摘要(英) The UiO family, a series of relatively new zirconium-based MOF, has attracted much attention due to its high thermal, chemical, and mechanical stability. Coupled with the high surface area, these features make it a suitable material for gas storage and separation. UiO-66, one such material with benzene-1,4-dicarboxylic acid (BDC) as its linker, possesses good crystallinity. Recent studies have shown that the missing-linker defect can be introduced in the crystal lattice by use of modulators. Such structural disorder is believed to enhance the porosity and free volume so as to improve gas adsorption performance.
In this work, Monte Carlo simulations and density functional theory (DFT) are applied to explain adsorption behavior of ideal and defect-containing UiO-66. Under high pressure, the accessible free volume is the main factor of adsorption behavior in the framework, while the isosteric heat (or adsorption energy) plays the dominant role at low pressure. Because of the different mechanism of gas adsorption under different pressure, defect-free UiO-66 shows the lowest CO2 adsorption capacity under high pressure but the highest uptake under low pressure. The adsorption energy was further quantified by DFT in the single gas adsorption condition as an aid to explain the adsorption behavior under low pressure. In our experimental works, different defect-level samples had been tuned by varying the concentration of formic acid (FA) in the synthesis process and quantified by thermogravimetric analysis (TGA). Same features of the CO2 adsorption mechanism were found, confirming the influence of adsorption energy and capacity seen in simulations. This combined study gives us a systematic discussion in understanding gas adsorption behavior in zirconium-based MOFs.
關鍵字(中) ★ 有機金屬框架結構
★ 蒙地卡羅法
★ 密度泛函理論
★ 等溫吸附曲線
★ 缺陷工程
關鍵字(英) ★ Metal-organic frameworks
★ GCMC
★ DFT
★ Adsorption isotherm
★ Defect engineering
論文目次 Table of Content
摘要.................................................................................................................... i
Abstract ............................................................................................................. ii
Table of Content............................................................................................. iv
List of Figures............................................................................................... viii
List of Tables ..................................................................................................xv
Chapter 1 Background .......................................................................................1
1.1 Introduction ...........................................................................................1
1.2 Literature Review..................................................................................5
1.3 Motivation ...........................................................................................19
Chapter 2 Computational .................................................................................20
2.1 Visualizer Software .............................................................................20
2.2 Computational package .......................................................................20
2.2.1 CASTEP (Cambridge Serial Total Energy Package)............................ 20
2.2.2 Sorption tools........................................................................................ 21
2.3 Theory..................................................................................................22
2.3.1 Density Functional Theory ................................................................... 22
2.3.2 Self-consistent field (SCF).................................................................... 26
2.3.3 Basis set ................................................................................................ 27
v
2.3.4 Energy cutoff convergence ................................................................... 27
2.3.5 K-point sampling .................................................................................. 28
2.3.6 Pseudopotential..................................................................................... 28
2.3.7 Monte Carlo (MC) method ................................................................... 30
2.3.8 Radial distribution function .................................................................. 32
2.4 Computational Detail ..........................................................................33
2.4.1 Model construction ............................................................................... 33
2.4.2 Convergence Testing ............................................................................ 37
2.4.3 Geometry optimization ......................................................................... 39
2.4.4 Monte Carlo simulation ........................................................................ 41
2.4.5 Radial distribution function analysis .................................................... 42
Chapter 3 Experimental ...................................................................................43
3.1 Chemicals............................................................................................43
3.2 Equipment Used ..................................................................................44
3.3 Experimental Procedures.....................................................................45
3.3.1 Synthesis of ideal UiO-66..................................................................... 45
3.3.2 Synthesis of Acid-Modulated UiO-66 .................................................. 46
3.4 Materials Characterizations.................................................................47
3.4.1 X-ray Diffraction (XRD) ...................................................................... 47
3.4.2 Scanning Electron Microscopy (SEM)................................................. 47
3.4.3 Thermogravimetric analyzer (TGA, PerkinElmer, PYRIS 1 TGA) ..... 48
3.4.4 Nitrogen Adsorption Measurement (BET, ASAP2020)....................... 48
vi
3.4.5 Carbon Dioxide Adsorption Measurement (ASAP2020) ..................... 49
Chapter 4 Results and Discussion....................................................................50
4.1 Physical Properties of UiO-66.............................................................50
4.2 Adsorption Behavior Under High Pressure.........................................51
4.2.1 Adsorption Isotherms............................................................................ 51
4.2.2 Adsorption Mechanism......................................................................... 52
4.3 Adsorption Behavior Under Low Pressure .........................................54
4.3.1 Adsorption Isotherms............................................................................ 54
4.3.2 Isosteric Heat Calculations ................................................................... 56
4.3.3 Adsorption Mechanism......................................................................... 57
4.4 Adsorption Site Discussion .................................................................58
4.4.1 GCMC Snapshots.................................................................................. 58
4.4.2 Single Gas Adsorption .......................................................................... 63
4.4.3 Radial Distribution Functions Analysis................................................ 66
4.4.4 Adsorption Energy Calculations........................................................... 67
4.5 Experiment Authentication: Acid-Modulated UiO-66 .......................69
4.5.1 X-ray Diffraction .................................................................................. 69
4.5.2 Morphology........................................................................................... 70
4.5.3 Thermogravimetric Analysis ................................................................ 71
4.5.4 N2 adsorption measurements................................................................. 82
4.5.5 Pore size analysis.................................................................................. 84
4.5.6 CO2 adsorption measurements.............................................................. 88
vii
Chapter 5 Conclusions.....................................................................................95
Chapter 6 Future Works...................................................................................96
References........................................................................................................97
參考文獻 References
[1] J.C.M. Pires, F.G. Martins, M.C.M. Alvim-Ferraz, M. Simoes, Recent developments on carbon capture and storage: An overview, Chem. Eng. Res. Des., 89 (2011) 1446-1460.
[2] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal-Organic Frameworks, Chem. Rev., 112 (2012) 673-674.
[3] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38 (2009) 1477-1504.
[4] P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem.-Int. Edit., 45 (2006) 5974-5978.
[5] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130 (2008) 13850-13851.
[6] S.M.J. Rogge, J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, V. Van Speybroeck, Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion, Chem. Mat., 28 (2016) 5721-5732.
[7] W.B. Liang, C.J. Coghlan, F. Ragon, M. Rubio-Martinez, D.M. D′Alessandro, R. Babarao, Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study, Dalton Trans., 45 (2016) 4496-4500.
[8] O.V. Gutov, M.G. Hevia, E.C. Escudero-Adan, A. Shafir, Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks, Inorg. Chem., 54 (2015) 8396-8400.
[9] Z.L. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-Engineered Metal-Organic Frameworks, Angew. Chem.-Int. Edit., 54 (2015) 7234-7254.
[10] H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption, J. Am. Chem. Soc., 135 (2013) 10525-10532.
[11] A. De Vos, K. Hendrickx, P. Van der Voort, V. Van Speybroeck, K. Lejaeghere, Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering, Chem. Mat., 29 (2017) 3006-3019.
[12] F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D.E. De Vos, Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr), J. Am. Chem. Soc., 135 (2013) 11465-11468.
[13] A. Sharma, K.V. Lawler, J.J. Wolffis, C.T. Eckdahl, C.S. McDonald, J.L.C. Rowsell, S.A. FitzGerald, P.M. Forster, Hydrogen Uptake on Coordinatively Unsaturated Metal Sites in VSB-5: Strong Binding Affinity Leading to High-Temperature D-2/H-2 Selectivity, Langmuir, 33 (2017) 14586-14591.
[14] L.J. Chen, C.A. Morrison, T. Duren, Improving Predictions of Gas Adsorption in Metal-Organic Frameworks with Coordinatively Unsaturated Metal Sites: Model Potentials, ab initio Parameterization, and GCMC Simulations, J. Phys. Chem. C, 116 (2012) 18899-18909.
[15] E.S. Kadantsev, P.G. Boyd, T.D. Daff, T.K. Woo, Fast and Accurate Electrostatics in Metal Organic Frameworks with a Robust Charge Equilibration Parameterization for High-Throughput Virtual Screening of Gas Adsorption, J. Phys. Chem. Lett., 4 (2013) 3056-3061.
[16] C.E. Wilmer, K.C. Kim, R.Q. Snurr, An Extended Charge Equilibration Method (vol 3, pg 2506, 2012), J. Phys. Chem. Lett., 3 (2012) 2897-2897.
[17] B.A. Wells, C. De Bruin-Dickason, A.L. Chaffee, Charge Equilibration Based on Atomic Ionization in Metal-Organic Frameworks, J. Phys. Chem. C, 119 (2015) 456-466.
[18] J.G. Harris, K.H. Yung, CARBON DIOXIDES LIQUID-VAPOR COEXISTENCE CURVE AND CRITICAL PROPERTIES AS PREDICTED BY A SIMPLE MOLECULAR-MODEL, J. Phys. Chem., 99 (1995) 12021-12024.
[19] J.J. Potoff, J.I. Siepmann, Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, Aiche J., 47 (2001) 1676-1682.
[20] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, A FULL PERIODIC-TABLE FORCE-FIELD FOR MOLECULAR MECHANICS AND MOLECULAR-DYNAMICS SIMULATIONS, J. Am. Chem. Soc., 114 (1992) 10024-10035.
[21] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING - A GENERIC FORCE-FIELD FOR MOLECULAR SIMULATIONS, J. Phys. Chem., 94 (1990) 8897-8909.
[22] Q.Y. Yang, A.D. Wiersum, P.L. Llewellyn, V. Guillerm, C. Serred, G. Maurin, Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration, Chem. Commun., 47 (2011) 9603-9605.
[23] Q.Y. Yang, A.D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, G. Maurin, Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach, J. Phys. Chem. C, 115 (2011) 13768-13774.
[24] L.Z. Xia, Q. Liu, Adsorption of H-2 on aluminum-based metal-organic frameworks: A computational study, Comput. Mater. Sci., 126 (2017) 176-181.
[25] S.E. Wenzel, M. Fischer, F. Hoffmann, M. Froba, Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker - A Promising Material for Hydrogen Storage, Inorg. Chem., 48 (2009) 6559-6565.
[26] L.Z. Xia, F.L. Wang, Prediction of hydrogen storage properties of Zr-based MOFs, Inorg. Chim. Acta, 444 (2016) 186-192.
[27] F.D. Lamari, D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes, J. Chem. Phys., 109 (1998) 4981-4984.
[28] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Kristall., 220 (2005) 567-570.
[29] Sorption 7.0; Dassault System BIOVIA; San Diego.
[30] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph., 14 (1996) 33-38.
[31] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, ITERATIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS - MOLECULAR-DYNAMICS AND CONJUGATE GRADIENTS, Rev. Mod. Phys., 64 (1992) 1045-1097.
[32] C.A. Trickett, K.J. Gagnon, S. Lee, F. Gandara, H.B. Burgi, O.M. Yaghi, Definitive Molecular Level Characterization of Defects in UiO-66 Crystals, Angew. Chem.-Int. Edit., 54 (2015) 11162-11167.
[33] G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework UiO-66 via Modulated Synthesis, Chem. Mat., 28 (2016) 3749-3761.
[34] A.F. Ismail, K.C. Khulbe, T. Matsuura, Gas separation membranes : polymeric and inorganic, (2015).
[35] M.W. Anjum, F. Vermoortele, A.L. Khan, B. Bueken, D.E. De Vos, I.F.J. Vankelecom, Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation, ACS Appl. Mater. Interfaces, 7 (2015) 25193-25201.
[36] D. Cunha, C. Gaudin, I. Colinet, P. Horcajada, G. Maurin, C. Serre, Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs, J. Mat. Chem. B, 1 (2013) 1101-1108.
[37] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25 (1996) 1509-1596.
指導教授 張博凱(Bor Kae Chang) 審核日期 2018-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明