博碩士論文 105324044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.188.85.175
姓名 楊濰甄(Wei-Chen Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 聚(氘化苯乙烯-b-甲基丙烯酸甲酯)薄膜於紫外光改質聚苯乙烯層之熱退火期間型態轉變探討
(Morphological Evolution of Thermal Annealed Deuterated Polystyrene-block-Poly(methyl methacrylate) Thin Films on a UV-Treated Polystyrene Layer)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要藉由原子力顯微鏡、穿透式電子顯微鏡、低掠射小角度X-光散射和中子反射探討聚(氘化苯乙烯-b-甲基丙烯酸甲酯) (Deuterated Polystyrene-block-Poly(methyl methacrylate), dPS-b-PMMA)薄膜在具有中性表面之改質聚苯乙烯層(Polystyrene, PS),於熱回火效應對微相分離結構有序性及排向性的結構影響。

首先利用紫外光在充滿氮氣環境中(手套箱)照射交聯,而中性層的產生則是在空氣下照射紫外光獲得,再利用紫外光於空氣中照光,製備具有中性表面之PS層,再利用旋轉塗佈法將dPS-b-PMMA薄膜旋鍍於以紫外光照射交聯及中性化改質之PS層上,接著在真空環境中進行210-280 oC恆溫熱回火。其結果發現在低於270 oC下熱回火,dPS-b-PMMA表面容易形成一層dPS潤濕層,這是由於在此溫度條件下,dPS鏈段及PMMA鏈段之自由表面能()並未相同(即dPSPMMA,非中性表面)。在270 oC恆溫回火,可抑制dPS潤濕層,顯示在此條件下dPSPMMA。此外我們發現在270 oC恆溫回火不同時間,短時間熱回火則形成垂直取向的層板狀結構,而隨著回火時間增加,垂直層板狀轉變為垂直奈米柱狀,最後形成穿孔層狀奈米結構,在此論文中,我們將針對相轉變之機制做深入探討及解釋。
摘要(英) In this study, the structural evolution of deuterated polystyrene-block-poly (methyl methacrylate) (dPS-b-PMMA) thin films with thermal annealing of various durations on a layer of UV-irradiated polystyrene were studied by means of atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incident small-angle X-ray scattering (GISAXS) and neutron reflectivity (NR). Upon exposure to UV light in a glove box and in air, the PS layer was cross-linked and neutralized. dPS-b-PMMA thin films supported on the cross-linked/neutralized PS layer were prepared by spin coating and then the specimens were isothermally annealed at 210280∘C under vacuum. We found that thermal annealing at a temperature below 270 oC would preferentially grew a wetting layer of dPS on top. The formation of the preferential wetting layer is due to the fact that the surface energy (dPS) of the dPS block was not equal to that (PMMA) of the PMMA block. In other words, below 270 oC, the free surface of the dPS-b-PMMA was not neutral. When annealed at 270 oC, dPS-b-PMMA would have a neutral free surface. Besides, we found that 270 oC-thermal annealing of a short period first led to the formation of perpendicular-oriented lamellae. Nevertheless, prolonged thermal annealing produced phase transitions from standing lamellae to vertical nanocylinders and finally to perforated-layer-like nanostructures. In this thesis, we would propose possible mechanisms about the morphology evolution.
關鍵字(中) ★ 嵌段共聚物
★ 中子反射
★ 聚(氘化苯乙烯-b-甲基丙烯酸甲酯)
★ 相轉變
關鍵字(英) ★ Block Copolymer
★ Neutron Reflectivity
★ dPS-b-PMMA
★ Phase Transition
論文目次 摘要(v)
Abstract(vi)
致謝(vii)
目錄(ix)
圖目錄(xii)
表目錄(xvi)
第1章 簡介(1)
一、高分子團鏈共聚物(1)
1-1.團鏈共聚物(1)
1-2.團鏈共聚物之自組裝行為(2)
1-3.自洽平均場理論(4)
1-4.高分子薄膜內之微相分離結構(5)
1-5.高分子薄膜之空間侷限效應及界面/表面能的影響(5)
1-6.高分子薄膜之濕潤與非潤濕(7)
二、控制高分子薄膜的有序性結構之排向(9)
2-1.表面改質-化學接枝法(9)
2-2.表面改質-石墨稀法(11)
2-3.表面改質-化學官能基交聯法(12)
2-4.表面改質-光化學交聯法(13)
三、研究背景與動機(15)
第2章 實驗(16)
一、實驗材料(16)
二、實驗儀器(18)
三、實驗製備與設計(20)
3-1.矽晶基材清洗(20)
3-2.改質前聚苯乙烯薄膜製備(20)
3-3.紫外光改質聚苯乙烯薄膜(21)
3-4.聚(氘化苯乙烯-b-甲基丙烯酸甲酯)有序結構製備(22)
3-5.聚(氘化苯乙烯-b-甲基丙烯酸甲酯)熱穩定性量測(22)
3-6.薄膜樣品低掠角小角度X光散射測量(23)
3-7.塊材樣品之穿透式小角度X光散射儀測量(24)
3-8.光電子能譜分析(24)
3-9.薄膜中子反射儀量測(25)
四、中子科學之特性(27)
4-1.中子源的特點(27)
4-2.中子技術的優點(28)
五、儀器原理(30)
5-1.原子力顯微鏡(30)
5-2.低掠角式小角度X光散射儀(31)
5-3.X光反射率掃描量測(33)
5-4.中子反射儀(34)
第3章 結果與討論(36)
3-1.聚苯乙烯表面改質之探討(36)
3-2.聚(氘化苯乙烯-b-甲基丙烯酸甲酯)之退火溫度探討(41)
3-3.聚(氘化苯乙烯-b-甲基丙烯酸甲酯)之相轉變行為(44)
3-4.聚(氘化苯乙烯-b-甲基丙烯酸甲酯)不同膜厚之結構探討(50)
3-5.聚(氘化苯乙烯-b-甲基丙烯酸甲酯)之相轉變因素之探討(52)
3-6.利用中子反射探討相轉變(55)
第4章 結論(62)
第5章 參考文獻(64)
參考文獻 1. Sperling L.H. Introduction to Physical Polymer Science. John Wiley & Sons, Inc., Chapter 2, pp 45-47. (2006)
2. Ham, S., Shin, C., Kim, E., Ryu, D. Y., Jeong, U., Russell, T. P., & Hawker, C. J.. Microdomain orientation of PS-b-PMMA by controlled interfacial interactions. Macromolecules, 41(17), 6431-6437. (2008)
3. Bates F. S., Fredrickson G. H. Block Copolymer-Designer Soft Materials. Phys. Today, 52, 32-38. (1999)
4. Sparnacci, K., Antonioli, D., Gianotti, V., Laus, M., Ferrarese Lupi, F., Giammaria, T. J.& Perego, M.Ultrathin random copolymer-grafted layers for block copolymer self-assembly. ACS applied materials & interfaces, 7(20), 10944-10951. (2015)
5. Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong Segregation Block Copolymer Theories. Macromolecules, 29, 1091−1098. (1996)
6. A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal & K. Mortnnsen. Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram Near the Order-Disorder Transition. Macromolecules, 28, 8796-8806. (1995)
7. Zhao, Y., Sivaniah, E., & Hashimoto, T. SAXS Analysis of the Order− Disorder Transition and the Interaction Parameter of Polystyrene-block-poly (methyl methacrylate). Macromolecules, 41(24), 9948-9951. (2008)
8. Mansky, P., Russell, T. P., Hawker, C. J., Mays, J., Cook, D. C., & Satija, S. K. Interfacial segregation in disordered block copolymers: effect of tunable surface potentials. Physical review letters, 79(2), 237. (1997)
9. Kim, Sangwon, et al. Order–disorder transition in thin films of horizontally-oriented cylinder-forming block copolymers: thermal fluctuations vs. preferential wetting. Soft Matter 12.27: 5915-5925. (2016)
10. A. Knoll, A. Horvat, K.S. Lyakhova, G. Krausch, G.J.A. Sevink, A.V. Zvelindovsky & R. Magerle. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymer, Physical Review Letters, 89, 035501-1-035501-4. (2002)
11. Hamley I.W. Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications. Progress in Polymer Scienc, 34, 1161-1210. (2009)
12. Kwok, D. Y.; Neumann, A. W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 81, 167-249. (1999)
13. S. Ji, G. Liu, F. Zheng, G. S. W. Craig, F. J. Himpsel & P. F. Nealey. Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends. Advanced Materials, 20, 3054-3060. (2008)
14. M. S. She, T. Y. Lo & R. M. Ho. Long-range ordering of block copolymer cylinders driven by combining thermal annealing and substrate functionalization. ACS Nano, 7, 2000-2011. (2013)
15. P. H. Liu, P. The´bault, P. Guenoun & J. Daillant. Easy orientation of diblock copolymers on self-assembled monolayers using UV irradiation, Macromolecules, 42, 9609-9612. (2009)
16. R. D. Peters, X. M. Yang, T. K. Kim, B. H. Sohn & P. F. Nealey. Using self- assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers. Langmuir, 16, 4625-463. (2000)
17. P. Mansky, Y. Liu, E. Huang, T. P. Russell & C. Hawker. Controlling polymer- surface interactions with random copolymer brushes. Science, 275, 1458-1460. (1997)
18. M. Yan & B. Harnish. A simple method for the attachment of polymer films on solid substrates. Advanced Materials, 15, 244-248. (2003)
19. M. L. Wuab, J. Liab, L. J. Wana & D. Wang. Monolayer graphene-supported free-standing PS-b-PMMA thin film with perpendicularly orientated microdomains. RSC Adv, 4, 63941-63945. (2014)
20. 中國科學院高能物理研究所,科普專題-散裂中子源
21. ThomasSaerbeck, FrankKlose. Neutron Scattering and Its Application to Investigate Magnetic Thin Film Structures. Procedia Engineering, Volume 36, Pages 488-495. (2012)
22. 吳崧豪,國立中央大學-化學工程與材料工程學系碩士論文-使用聚苯乙烯製備垂直嵌段共聚物薄膜奈米結構及交鏈密度探討,(2017)
23. 蘇暉家,李志浩,淺談中子反射儀,物理專文,60-65(2008)
24. J. Y. Liu & Y. S. Sun. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation, Soft Matter, 11, 7119-7129. (2015)
25. R. J. Klein, D. A. Fischer & J. L. Lenhart. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle, Langmuir, 24, 8187-8197. (2008)
26. J. R. Wunsch. Polystyrene – Synthesis, Production and Applications. iSmithers Rapra Publishing, Akron. (2000)
27. Maher, M. J., Bates, C. M., Blachut, G., Sirard, S., Self, J. L., Carlson, M. C.& Ellison, C. J. Interfacial design for block copolymer thin films. Chemistry of Materials, 26(3), 1471-1479. (2014).
28. Sun, Ya-Sen, Ching-Tun Wang, and Jiun-You Liou. Tuning polymer-surface chemistries and interfacial interactions with UV irradiated polystyrene chains to control domain orientations in thin films of PS-b-PMMA. Soft matter 12.11: 2923-2931. (2016)
29. D. Y. Ryu, K. Shin, E. Drockenmuller, C. J. Hawker & T. P. Russell. A generalized approach to the modification of solid surfaces, Science, 308, 236-239. (2005)
30. 莊鎮宇. 石墨烯簡介與熱裂解化學氣相合成方法石墨烯的近期發展, 物理雙月刊, 33, 155-162. (2011)
31. J. I. Paredes, S. Villar-Rodil, A. Martínez -Alonso & J. M. D. Tascón. Graphene Oxide Dispersions in Organic Solvents, Langmuir, 24, 10560-10564. (2008)
32. Wyart, F, B. Martin, P., Redon, C. Liquid/Liquid Dewetting, Langmuir, 9, 3682-3690. (1993)
33. Sharma, A., Reiter, G. Instability of Thin Polymer Films on Coated Substrates: Rupture, Dewetting, and Drop Formation, J. Coll. Interface Sci, 178, 383-399. (1996)
34. Reiter, G. Unstable Thin Polymer Films: Rupture and Dewetting Processes, Langmuir, 9, 1344-135. (1993)
35. Green, P. F., Limary, R. Nucleation Mechanism of Rupture of Newtonian Black Films: II. Experiment, Adv. Collid Interface Sci., 94, 53-81. (2001)

36. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao & C. N. Lau. Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett, 8, 902-907. (2008)
37. X. Li, W. Cai, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo & R. S. Ruoff. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, 324, 1312-1314. (2009)
38. 王敬敦,國立中央大學-化學工程與材料工程學系碩士論文-以紫外光照射聚苯乙烯製備垂直陣列嵌段共聚物薄膜奈米結構,(2016)
39. University of Wisconsin-Madison Materials Research Science and Engineering Center. Atomic Force Microscope
40. Bruker. X-ray Reflectivity
41. M. James, A.Nelson, S.A.Holt, T.Saerbeck, W.A. Hamilton, F.Klose. The Multipurpose Time-of-Flight Neutron Reflectometer “Platypus” at Australia′s OPAL Reactor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 632, 112-123. (2011)
42. 高分子網. 原子力顯微鏡原理與用途筆記
43. Institute of Physical Chemistry, University of Hamburg. Grazing Incidence Small Angle X-ray Scattering
44. 國家同步輻射研究中心 BL-23A. A small/wide-angle X-ray scattering instrument at NSRRC for structural characterizations with air-liquid interfaces, thin films, and bulk
45. Thomas P. Russell, Rex P. Hjelm Jr., and Phil A. Seeger. Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate), Macromolecules, 23, 890-893. (1990)
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2018-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明