博碩士論文 105324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.191.80.173
姓名 陳亭曄(Ting-Yeh Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 從人類初始結腸癌組織分離結腸癌細胞和癌症幹細胞為建立病患專一癌細胞株
(Isolation of colon cancer cells and cancer stem cells from primary colon cancer tissue for establishing patient-specific cancer cell lines)
相關論文
★ 連續式培養系統於接枝具奈米鏈段之熱敏感生物材料控制人類胚胎與誘導多功能幹細胞增生★ 重組及培養人類誘導型多能性幹細胞在奈米片段接枝表面
★ 羊水間葉幹細胞培養於細胞外間質寡?嫁接具有硬度/彈性表面的材料,其分化能力及多能性之研究★ 利用具有特定奈米片段及彈性的生醫材料去除癌症幹細胞
★ 人類脂肪幹細胞培養在具有細胞外基質接枝的水凝膠上之多能性與分化能力研究★ 用於人類胚胎幹細胞生長之生醫材料其奈米片段分子之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 癌症初始細胞或癌症幹細胞 (CSCs) ,是腫瘤內具有幹細胞特性之細胞,例如:自我更新和分化成多種細胞型態的能力,而這些特性賦予癌症初始細胞在引起腫瘤的復發及轉移中扮演重要的角色。這也意味著,在腫瘤內,癌症幹細胞是一個特殊的群落並且隨著新增生的腫瘤而造成癌症的復發與轉移。
為了發展出一套能夠鎖定癌症幹細胞方法,的我們結合物理及生化訊號,設計出能夠篩選細胞的培養皿。接枝不同的細胞外間質(ECM)及不同片段的寡?(理想生物訊號)於不同軟硬度(理想物理訊號)的篩選培養皿上。在生物訊號方面:成長因子、賀爾蒙、小化學分子和細胞外間質,可以決定幹細胞的分化路徑和多能性。因此,為了模仿幹細胞的微環境,許多研究致力於找出可溶性分化因子。在這個研究當中,不單單只有生物訊號,研究者也將開始評估物理訊號影響幹細胞之潛在的重要性,例如培養細胞基材的軟硬度。
目前尚未有關於藉由培養初始結腸癌症細胞於結合這兩個觀念的細胞篩選培養皿上的研究,去分離或消除癌症幹細胞和建立病患專一的結腸癌細胞株的研究。我們將會探討並找出最佳分離或消除癌症幹細胞的培養皿軟硬度和最佳的奈米片段。藉由注射癌症細胞於細胞篩選培養皿上,去評估和分析癌症幹細胞。
分析癌症幹細胞的方法,主要是利用偵測細胞的表面抗原來判定。已知結腸癌症幹細胞的表面具有許多抗原,例如: CD24 (HSA; 細胞貼附分子)、CD29 (β1受體; 細胞貼附分子)、CD44 (CDW44; 透明質酸受器)、CD133和CD166 (ALCAM; 細胞貼附分子)、Lgr5 (GPR49; Wnt目標基因)、Muc2和ESA (EpCAM,BerEp4; 細胞貼附分子)、Msi-1 (Musashi-1; 與RNA結合的蛋白質)、ALDH-1 (ALDC; 酵素)。對於白血病、腦腫瘤、視網膜母細胞瘤、腎腫瘤、胰腫瘤、結腸癌、前列腺癌和肝細胞癌中的癌症幹細胞而言,在這些抗原之中,CD133被認為是一個重要的表面抗原。但是CD133並不只專一表現在腸道幹細胞或癌症幹細胞中,而且CD133+的腫瘤細胞會造成更多活躍且具有形成腫瘤能力(在免疫缺陷老鼠)的CD133- 細胞。至今,專一且可靠的結腸癌症幹細胞表面抗原並未被發現。而目前確認且量化癌症幹細胞,唯一較可靠的方法是觀察在一連串異種移植模型中腫瘤的產生。
我們將會研究癌症幹細胞和固定於培養皿上的奈米片段之間特定的交互作用,以發展能夠分離或消除癌症幹細胞的細胞篩選培養皿。同樣地,我們也會發展具有純化癌症幹細胞的細胞篩選培養皿和從病人的初始結腸癌組織中建立病患專一的結腸癌細胞株。最終,我們希望試著利用純化的癌症幹細胞去分析癌症幹細胞的分子機構以及發展新穎癌幹細胞標靶藥物。
摘要(英) Tumors contain a small subpopulation of cells, i.e., cancer-initiating cells or cancer stem cells (CSCs), which exhibit stem cell properties, possess a self-renewing capacity and are responsible for tumor generation and metastasis. Cancer stem cells persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Furthermore, it is expected to establish primary colon cancer cell lines in vitro, since patient specific colon cancer cell lines is in great advantages of developing patient specific therapy in clinical application.
We are developing a method of establishing cancer cell lines from primary patient colon cancer tissue. Colon cancer tissue is digested by collagenase to generate colon cancer tissue solution. Subsequently, primary colon cancer cell lines were established by (a) culture method on specific culture materials, and (b) the membrane migration method through Nylon mesh filter.1 We investigate which factor is more important to establish the cancer cell lines from minimum amount of colon cancer tissue and determine the optimal conditions to establish patient specific colon cancer cell lines from primary colon cancer tissues. The patient specific colon cancer cell line will be useful for the patient-specific therapy in the future.
In this study, we designed cell sorting dishes from two combined concepts, which are physical cues and biological cues. Different extracellular matrix (ECM) and cell binding domain oligopeptides (biological cues) having different elasticity (physical cues) are immobilized on the cell sorting dishes as biological cues and physical cues for capturing CSCs. Optimal ECM/ECM-derived oligopeptide and elasticity of the dishes for (a) establishment of the patient-specific cancer cell lines and (b) isolation or depletion of CSCs have been shown in this study. Moreover, CSCs identification is quantified by colony forming assay and/or tumor generation in serial xenotransplantation model.
關鍵字(中) ★ 結腸癌
★ 癌症起始細胞
★ 癌症幹細胞
★ 細胞分選
★ 細胞外間質
關鍵字(英) ★ colon cancer
★ cancer-initiating cells
★ cancer stem cells
★ cell sorting dish
★ extracellular matrix
論文目次 Abstract…………………………………………………………………….….....i
Index of contents……………………………………………………..………... iv
Index of figures……………………………………………………………….. vii
Index of tables…………………………………………………………………. xi
Chapter 1 Introduction
1-1 The relationship between stem cells and cancer stem cells
1-1-1 Stem Cells………………………………………………………………….….........1
1-1-2 Existence of cancer stem cells………………………………………………...........3
1-1-3 Cancer stem cells model……………………………………………………............4
1-1-4 Challenge of primary culture…………………………………………………….…5
1-2 The relationship between cancer stem cells and microenvironment
1-2-1 Impact of cancer niche on cancer propagation…………………………………...8
1-2-2 Extracellular Matrix (ECM) …………………………………………………....15
1-2-3 Decellularization…………………………………………………………….….19
1-3 Identification of cancer stem cells
1-3-1 CSCs surface marker analysis by flow cytometry……………………………...22
1-3-2 In vitro tumorigenicity assay…………………………………………………...23
1-3-3 Carcinoembryonic antigen (CEA) detection by ELISA………………………..24
1-3-4 Immunofluorescent staining (IF) ………………………………………………25
1-4 Goal of this study…………………………………………………………………….26
Chapter 2 Materials and Methods
2-1 Culture substrates preparation
2-1-1 Preparation of extracellular matrix-coated dishes……………………………….27
2-1-2 Preparation of tumorigenesis-mimicking matrices dishes (Decellularization)….28 2-2 Culture medium preparation
2-2-1 Preparation of serum-free DMEM medium……………………………………..29
2-2-2 Preparation of serum-containing DMEM medium………………………………29
2-2-3 Preparation of phosphate buffer saline solution (PBS) …………………………29
2-2-4 Preparation of transportation medium…………………………………………...30
2-2-5 Preparation of digestion solution………………………………………………...30
2-2-6 Preparation of ACK lysis buffer……………………………………………...….30
2-3 Cell lines
2-3-1 Colon cancer cell lines…………………………………………………………..31
2-3-2 Isolation of human primary colon cancer cells………………………………….31
2-4 Cell culture
2-4-1 Culture and passage of colon cancer cell line…………………………………...33
2-4-2 Culture and passage of human primary colon cancer cells…………………...…34
2-5 Flow cytometry of cancer stem cells surface markers analysis………………………35
2-6 In vitro Colony forming assay………………………………………………………..36
2-7 ELISA of carcinoembryonic antigen (CEA) detection……………………………….38
Chapter 3 Results and Discussions
3-1 Colo 205 culture on different ECM substrate with decreasing seeding density
3-1-1 Morphology of Colo 205 on different ECM substrate with decreasing seeding density………………………………………………………………………………………...39
3-1-2 Cell growth curve and doubling time of Colo 205 on different ECM substrate...45
3-1-3 Flow cytometry analysis of Colo 205 on different ECM substrate………….…..55
3-1-4 Evaluation of tumorigenic potential of Colo 205 under different culture conditions……………………………………………………………………………………..73
3-2 Isolation of primary human colon cancer cells
3-2-1 Improvement of isolation process of human colon cancer cells………………...81
3-2-2 Evaluation of primary human colon cancer cells………………………….…....92
3-2-3 Culture of primary human colon cancer cells………………………………..….97
Chapter 4 Conclusion………………………………………………………………..……98
Supplementary date………………………………………………………….…99
Reference…………………………………………………………………………………..104
參考文獻 [1] Thomson, J. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 282(5391), pp.1145-1147.
[2] Rippon, H. and Bishop, A. (2004). Embryonic stem cells. Cell Proliferation, 37(1), pp.23-34.
[3] Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J. and Gepstein, L. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation, 108(3), pp.407-414.
[4] Watt, F. (2000). Out of Eden: Stem Cells and Their Niches. Science, 287(5457), pp.1427-1430.
[5] Annas et al. 1999; De Wert & Mummery 2003; Orive et al. 2003
[6] Vaiopoulos, A., Kostakis, I., Koutsilieris, M. and Papavassiliou, A. (2012). Colorectal Cancer Stem Cells. STEM CELLS, 30(3), pp.363-371.
[7] Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, pp.313-319.
[8] Furth, J. & Kahn, M. The transmission of leukemia of mice with a single cell. Am. J. Cancer 31, 276–282(1937). (7的3)
[9] Kleinsmith, L.J. & Pierce, G.B. Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551(1964). (7的7)
[10] Plaks, V., Kong, N. and Werb, Z. (2018). The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells?.
[11] Bonnet, D. and Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), pp.730-737.
[12] Al-Hajj, M., Wicha, M., Benito-Hernandez, A., Morrison, S. and Clarke, M. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), pp.3983-3988.
[13] Plaks, V., Kong, N. and Werb, Z. (2015). The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells?. Cell Stem Cell, 16(3), pp.225-238.
[14] Vries RG, Huch M, Clevers H. Stem cells and cancer of the stomach and intestine. Mol Oncol 2010;4:373–384.
[15] Lobo NA, Shimono Y, Qian D et al. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007;23:675–699.
[16] Boman BM, Huang E. Human colon cancer stem cells: A new paradigm in gastrointestinal oncology. J Clin Oncol 2008;26:2828–2838.
[17] Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer 2008;8: 755–768.
[18] Haegebarth A, Clevers H. Wnt signaling, Lgr5, and stem cells in the intestine and skin. Am J Pathol 2009;174:715–721.
[19] 19 Simons BD, Clevers H. Stem cell self-renewal in intestinal crypt. Exp Cell Res 2011;317:2719–2724.
[20] Tirino, V., Desiderio, V., Paino, F., De Rosa, A., Papaccio, F., La Noce, M., Laino, L., De Francesco, F. and Papaccio, G. (2013). Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. The FASEB Journal, 27(1), pp.13-24.
[21] Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010;120:41–50.
[22] Lugli A, Iezzi G, Hostettler I et al. Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer 2010;103: 382–390.
[23] Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:1568–1571.
[24] Abdul Khalek FJ, Gallicano GI, Mishra L. Colon cancer stem cells. Gastrointest Cancer Res 2010(suppl 1):16–23.
[25] Fevr T, Robine S, Louvard D et al. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007;27:7551–7559.
[26] Hardwick JC, Kodach LL, Offerhaus GJ et al. Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 2008;8:806–812.
[27] Brittan M, Wright NA. Stem cell in gastrointestinal structure and neoplastic development. Gut 2004;53:899–910.
[28] Burness ML, Sipkins DA. The stem cell niche in health and malignancy. Semin Cancer Biol 2010;20:107–115.
[29] Vermeulen L, De Sousa EMF, van der Heijden M et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010;12:468–476.
[30] Monteiro J, Fodde R. Cancer stemness and metastasis: Therapeutic consequences and perspectives. Eur J Cancer 2010;46:1198–1203.
[31] Takaku K, Oshima M, Miyoshi H et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998;92:645–656.
[32] Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? Cancer Cell 2005;7:17–23.
[33] Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559–1564. 41 Sleeman JP, Nazarenko I, Thiele W. Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 2011;128:2511–2526.
[34] Dittmar T, Heyder C, Gloria-Maercker E et al. Adhesion molecules and chemokines: The navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 2008;25:11–32.
[35] Brooks SA, Lomax-Browne HJ, Carter TM et al. Molecular interactions in cancer cell metastasis. Acta Histochem 2010;112:3–25.
[36] Singh A, Settleman J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene 2010;29:4741–4751.
[37] Monteiro J, Fodde R. Cancer stemness and metastasis: Therapeutic consequences and perspectives. Eur J Cancer 2010;46:1198–1203.
[38] Takaku K, Oshima M, Miyoshi H et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998;92:645–656.
[39] Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? Cancer Cell 2005;7:17–23.
[40] Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559–1564.
[41] Sleeman JP, Nazarenko I, Thiele W. Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 2011;128:2511–2526.
[42] Dittmar T, Heyder C, Gloria-Maercker E et al. Adhesion molecules and chemokines: The navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 2008;25:11–32.
[43] 43 Brooks SA, Lomax-Browne HJ, Carter TM et al. Molecular interactions in cancer cell metastasis. Acta Histochem 2010;112:3–25.
[44] 44 Singh A, Settleman J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene 2010;29: 4741–4751.
[45] 45 Kong D, Li Y, Wang Z et al. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers (Basel) 2011;3:716–729.
[46] 46 Dalerba P, Clarke MF. Cancer stem cells and tumor metastasis: First steps into uncharted territory. Cell Stem Cell 2007;1:241–242.47 Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: Mirage or reality? Nat Med 2009;15:1010–1012.
[47] Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009;324:1670–1673.
[48] Hoshiba, T., Chen, G., Endo, C., Maruyama, H., Wakui, M., Nemoto, Tanaka, M. (2016). Decellularized Extracellular Matrix as anIn VitroModel to Study the Comprehensive Roles of the ECM in Stem Cell Differentiation. Stem Cells International, 2016, 1-10.
[49] Hoon DS, Ferris R, Tanaka R et al. Molecular mechanisms of metastasis. J Surg Oncol 2011;103:508–517.
[50] Sun YF, Yang XR, Zhou J et al. Circulating tumor cells: Advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol 2011;137:1151–1173.
[51] Iinuma H, Watanabe T, Mimori K et al. Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes’ stage B and C colorectal cancer. J Clin Oncol 2011;29:1547–1555.
[52] Gazzaniga P, Gradilone A, Petracca A et al. Molecular markers in circulating tumour cells from metastatic colorectal cancer patients. J Cell Mol Med 2010;14:2073–2077.
[53] Salama P, Platell C. Colorectal cancer stem cells. ANZ J Surg 2009; 79:697–702.
[54] Rajasekhar VK, Dalerba P, Passegue E et al. The 5th International Society for Stem Cell Research (ISSCR) Annual Meeting, June 2007. Stem Cells 2008;26:292–298.
[55] Botchkina IL, Rowehl RA, Rivadeneira DE et al. Phenotypic subpopulations of metastatic colon cancer stem cells: Genomic analysis. Cancer Genomics Proteomics 2009;6:19–29.
[56] Cammareri P, Lombardo Y, Francipane MG et al. Isolation and culture of colon cancer stem cells. Methods Cell Biol 2008;86:311–324. 57 Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells. Tumour Biol 2010;31:243–253.
[57] Carvalho, J. L. (2012). Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells. Journal of Tissue Science & Engineering,S11.
[58] Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445: 111–115.
[59] O’Brien CA, Pollett A, Gallinger S et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–110.
[60] Horst D, Kriegl L, Engel J et al. CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 2008;99:1285–1289.
[61] Horst D, Kriegl L, Engel J et al. CD133 and nuclear beta-catenin: The marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 2009;45:2034–2040.
[62] Kojima M, Ishii G, Atsumi N et al. Immunohistochemical detection of CD133 expression in colorectal cancer: A clinicopathological study. Cancer Sci 2008;99:1578–1583.
[63] Horst D, Scheel SK, Liebmann S et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 2009;219:427–434.
[64] Artells R, Moreno I, Diaz T et al. Tumour CD133 mRNA expression and clinical outcome in surgically resected colorectal cancer patients. Eur J Cancer 2010;46:642–649.
[65] Huh JW, Park YS, Lee JH et al. CD133 mRNA expression and microsatellite instability in colorectal carcinoma. J Surg Oncol 2010;102:765–770.
[66] Wang Q, Chen ZG, Du CZ et al. Cancer stem cell marker CD133t tumour cells and clinical outcome in rectal cancer. Histopathology 2009;55:284–293.
[67] Elsaba TM, Martinez-Pomares L, Robins AR et al. The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 2010;19:e10714.
[68] Kemper K, Sprick MR, de Bree M et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010;70:719–729.
[69] Osmond TL, Broadley KW, McConnell MJ. Glioblastoma cells negative for the anti-CD133 antibody AC133 express a truncated variant of the CD133 protein. Int J Mol Med 2010;5:883–888.
[70] Shmelkov SV, Butler JM, Hooper AT et al. CD133 expression is not restricted to stem cells, and both CD133t and CD133_ metastatic colon cancer cells initiate tumors. J Clin Invest 2008;118:2111–2120.
[71] Du L, Wang H, He L et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008;14:6751–6760.
[72] Huh JW, Kim HR, Kim YJ et al. Expression of standard CD44 in human colorectal carcinoma: Association with prognosis. Pathol Int 2009;59:241–246.
[73] Haraguchi N, Ohkuma M, Sakashita H et al. CD133tCD44t population efficiently enriches colon cancer initiating cells. Ann Surg Oncol 2008;15:2927–2933.
[74] Dalerba P, Dylla SJ, Park IK et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007;104:10158–10163.
[75] Chu P, Clanton DJ, Snipas TS et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 2009;124:1312–1321.
[76] Todaro M, Perez Alea M, Scopelliti A et al. IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 2008;7:309–313.
[77] Vermeulen L, Todaro M, de Sousa Mello F et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 2008;105:13427–13432.
[78] Choi D, Lee HW, Hur KY et al. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol 2009;15:2258–2264.
[79] Weichert W, Denkert C, Burkhardt M et al. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res 2005;11:6574–6581.
[80] Yeung TM, Gandhi SC, Wilding JL et al. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 2010;107:3722–3727.
[81] Fan LF, Dong WG, Jiang CQ et al. Expression of putative stem cell genes Musashi-1 and beta1-integrin in human colorectal adenomas and adenocarcinomas. Int J Colorectal Dis 2010;25:17–23.
[82] Weichert W, Knosel T, Bellach J et al. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol 2004;57:1160–1164
[83] Becker L, Huang Q, Mashimo H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Scientific World Journal 2008;8:1168–1176.
[84] Barker N, Ridgway RA, van Es JH et al. Crypt stem cells as the cellsof- origin of intestinal cancer. Nature 2009;457:608–611.
[85] Kleist B, Xu L, Li G et al. Expression of the adult intestinal stem cell marker Lgr5 in the metastatic cascade of colorectal cancer. Int J Clin Exp Pathol 2011;4:327–335.
[86] Takahashi H, Ishii H, Nishida N et al. Significance of Lgr5(tve) cancer stem cells in the colon and rectum. Ann Surg Oncol 2011;18:1166–1174.
[87] Pang R, Law WL, Chu AC et al. A subpopulation of CD26t cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010;6:603–615.
[88] Chen Y, Orlicky DJ, Matsumoto A et al. Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochem Biophys Res Commun 2011;405:173–179.
[89] Deng S, Yang X, Lassus H et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010;5:e10277.
[90] Carpentino JE, Hynes MJ, Appelman HD et al. Aldehyde dehydrogenase- expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 2009;69:8208–8215.
[91] Saiki Y, Ishimaru S, Mimori K et al. Comprehensive analysis of the clinical significance of inducing pluripotent stemness-related gene expression in colorectal cancer cells. Ann Surg Oncol 2009;16: 2638–2644.
[92] Ong CW, Kim LG, Kong HH et al. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol 2010;23:450–457.
[93] Saigusa S, Tanaka K, Toiyama Y et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 2009;16:3488–3498.
[94] Navarro-Alvarez N, Kondo E, Kawamoto H et al. Isolation and propagation of a human CD133(_) colon tumor-derived cell line with tumorigenic and angiogenic properties. Cell Transplant 2010;19: 865–877.
[95] Massard C, Deutsch E, Soria JC. Tumour stem cell-targeted treatment: Elimination or differentiation. Ann Oncol 2006;17:1620–1624.
[96] Dylla SJ, Beviglia L, Park IK et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008;3:e2428.
[97] Schatton T, Frank NY, Frank MH. Identification and targeting of cancer stem cells. Bioessays 2009;31:1038–1049.
[98] Todaro M, Alea MP, Di Stefano AB et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin- 4. Cell Stem Cell 2007;4:389–402.
[99] Garibyan, L. & Fisher, D.E. How sunlight causes melanoma. Curr. Oncol. Rep. 12, 319-326, doi:10.1007/s11912-010-0119-y (2010).
[100] Eigentler, T.K., Meier, F., Keilholz, U., Hauschild, A., & Garbe, C. In: Der Onkologe, Vol. 16, Springer-Verlag, 1160-1166 (2010).
[101] 101 Hendijani, F. (2017). Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Proliferation, 50(2), p.e12334.
指導教授 ?口亞紺(Akon Higuchi) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明