博碩士論文 105324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.191.240.243
姓名 戴世宣(Shih-Hsuan Tai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討
(Ab Initio Study of Oxygen Reduction Reaction & Raman Enhancement Potential of Nitrogen-Doped Graphene)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構之二氧化碳吸附性質探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 燃料電池可以直接將化學能轉化成高密度、高效率的電能,且燃料電池被認為是對環境友善的一種電池。燃料電池的陰極的主要反應是氧氣還原反應(oxygen reduction reaction, ORR),因為氧氣還原反應在動力學上是一個速度較慢的反應,進而影響燃料電池的整體表現 [1]。 傳統上,陰極是使用金屬材料像是鉑或是鉑的合金。近年來,更多的研究是應用非金屬材料像是奈米碳管(carbon nanotubes)及氮掺石墨烯(nitrogen-doped graphene, NG)在燃料電池的陽極上。石墨烯及其衍生物的電性對燃料電池的應用是很有幫助的。有研究指出,氮掺石墨烯及含缺陷碳材料可以有助於加快氧氣還原反應在燃料電池的陽極裡的表現 [2]。
拉曼光譜(Raman spectroscopy)被用來迅速且精準辨識分子的種類。然而,一般分子的非常小的拉曼散射截面(scattering-cross section)及其相對弱的訊號會造成拉曼光譜不好辨識分子。表面增強拉曼散射 (surface-enhanced Raman scattering, SERS)是一個對表面敏感的技術去偵測分子的拉曼訊號。表面增強拉曼散射的機制可以分為兩種:一種是電磁場增強機制(electromagnetic mechanism, EM),另一種則是化學增強機制 (chemical enhancement mechanism, CM)。石墨烯增強拉曼散射(Graphene-enhanced Raman scattering, GERS),是利用石墨烯作為基材,去增強拉曼訊號的一個方法,並且被認為是一個新的方法去研究化學增強機制。此外,實驗及模擬的研究中,都顯示出利用氮掺石墨烯為基材去探討表面增強拉曼訊號的效應,會比使用一般石墨烯為基材有更好的效果 [3-6]。
在本研究中,我們利用密度泛函理論(density functional theory, DFT)去探討氮掺石墨烯在兩個不同的領域的效果。在氧氣還原反應的部分,我們全面地探討四種不同的氮摻雜型態及五種模型:四及氮(quaternary nitrogen or graphitic nitrogen, NQ)、五環氮(pyrrolic nitrogen, N5)、六環氮(pyridinic-N, N6 and N6nH)、三個六環氮(three-pyridinic-N, 3N6)。 我們建造並且呈現初始的五種模型,利用五種模型去模擬氧氣還原反應的各個步驟,並且算出每個步驟的自由能。計算出的自由能可以得出氧氣還原反應的自由能反應路徑能階圖,利用自由能反應路徑能階圖,可以得到哪一種氮摻雜型態是最適合當作氧氣還原反應的基材。所有的模型,除了五環氮是進行解離機構反應以外,其他的氮摻雜型態都是進行聯合機構反應。計算得到的自由能路徑顯示出五種氮摻雜型態對氧氣還原反應的反應性,排名由高至低是N6、NQ、N6nH、3N6、N5。計算得出的不同氮摻雜石墨烯的自旋密度及電荷密度的結果,更進一步輔助我們的結論。
在石墨烯增強拉曼散射的部分,我們探討石墨烯、氮掺石墨烯、羅丹明6G (Rhodamine 6G, R6G)的拉曼光譜及電性。我們系統性的描述不同種氮摻雜石墨烯與R6G的接觸。我們用模擬計算得出的R6G的拉曼光譜去對比R6G在氮掺石墨烯上的拉曼光譜,結果顯示拉曼訊號的增強因子(enhancement factor, EF)的範圍落在3至68倍。理論計算得出的態密度(density of state, DOS)可以讓我們得到最低未佔分子軌域減去費米能階的值(energy gap of LUMO-EF),而綜觀比較五種氮掺石墨烯與R6G的態密度,R6G在NQ上有最低的能階,這也代表在石墨烯增強拉曼裡,散射NQ是最有潛力的氮型態。計算出來的拉曼光譜也顯示出NQ是在石墨烯增強拉曼散射中最好的氮型態。
摘要(英) Fuel cells can directly convert chemical energy from a fuel into electricity with high power density, efficiency and in a more environmentally friendly fashion. The oxygen reduction reaction (ORR) is the main reaction on the cathode of fuel cells, and this reaction is limited by its kinetically slow reaction, which in turn decides the overall performance of fuel cells. Traditionally, metallic materials such as platinum and its alloys are used at the cathode. Recently, non-metallic materials such as carbon nanotubes and nitrogen-doped graphene (NG) have seen increased research in the field. Graphene and its derivatives are helpful for electrocatalytical application in fuel cells because of their electronic properties. There has been report that NG and carbon defects facilitate the oxygen reduction reaction (ORR) on the cathode in fuel cells.
Raman spectroscopy is used for quick, robust and precise molecular identification. However, the quite small cross-section of common molecules and rather weak signal. Surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman signal of molecules. The SERS effects come from two major mechanisms: electromagnetic mechanism (EM) and chemical enhancement mechanism (CM). Graphene-enhanced Raman scattering (GERS), used graphene as substrate for Raman enhancement, is developing up a new way to study CM and reinforce the practical application of the SERS. In addition, NG on SERS effects has been investigated recently on both experimental and theoretical study which show better SERS effects than pristine graphene.
In this study, for the ORR section, we investigate the ORR reactivity of NG by using density functional theory (DFT), a computational quantum mechanical technique. Four doped sites and five models are comprehensively studied: quaternary nitrogen (NQ), pyrrolic nitrogen (N5), pyridinic nitrogen (N6, N6nH) and three-pyridinic nitrogen (3N6). Models for possible sites during each step of the oxygen reduction reaction were set up and visualized to provide a platform to calculate the free energy of ORR reaction pathway to determine the suitability of each doping scenario for ORR reaction. All models except N5 react in associative mechanisms and N5 react in dissociative mechanisms. The calculated free energy pathway demonstrated that the ranking of the reactivity of ORR reaction of different nitrogen configurations from high to low is N6, NQ, N6nH, 3N6, N5. Spin density and charge density aid in describing levels of reactivity.
For the GERS section, we investigate the Raman spectra and electronic properties of periodic and cluster pristine and nitrogen-doped graphene models, and the dye molecule R6G. We describe the interaction between R6G and a systematic series of nitrogen-doped graphene: quaternary (NQ), pyrrolic (N5), pyridinic (N6, N6nH) and three-pyridinic (3N6). Density of state (DOS) and work function are calculated to quantify the GERS mechanism. We compared the simulated Raman spectrum of both R6G and R6G on NG, and the result shows enhancement factor (EF) of 3-68 times. Results of density of state (DOS) has shown that R6G on NQ has the energy gap of LUMO-EF which indicate that NQ can have highest potential on GERS effects. Our calculated results of Raman spectra also demonstrated that NQ is the best candidate to the GERS effects.
關鍵字(中) ★ 氧氣還原反應
★ 拉曼增強
★ 密度泛函理論
★ 氮掺石墨烯
★ 羅丹明6G
關鍵字(英) ★ Oxygen reduction reaction (ORR)
★ Density functional theory (DFT)
★ Raman enhancement
★ Rhodamine 6G
★ Nitrogen-doped graphene
論文目次 Table of Content
摘要 I
Abstract IV
Acknowledgment VI
Table of Content VII
List of Figures IX
List of Tables XVI
Chapter 1 Background 1
1.1 Introduction 1
1.2 Literature Review 5
1.2.1 Nitrogen doping configurations on carbon materials 5
1.2.2 Oxygen reduction reaction (ORR) 6
1.2.3 Raman Spectroscopy 19
1.2.4 Surface-enhanced Raman scattering (SERS) 20
1.3 Motivation 26
Chapter 2 Theory 27
2.1 Density functional theory (DFT) 27
2.2 Bloch’s theorem 30
2.3 Self-consistent field (SCF) 30
2.4 Pseudopotential 31
2.5 Cutoff energy 33
2.6 K-point sampling 34
2.7 Monte Carlo methods 35
Chapter 3 Computational Details 37
3.1 Software 37
3.2 Modules 37
3.3 Free energy pathway of ORR 38
3.4 Models setup 40
3.4.1 Supercell models 40
3.4.2 Cluster models 43
3.4.3 Rhodamine 6G (R6G) model 46
3.5 Convergence testing 48
3.6 Computational details 53
Chapter 4 Results and Discussion 56
4.1 Oxygen reduction reaction (ORR) on nitrogen-doped graphene 56
4.1.1 Structure with geometrical optimization 56
4.1.2 Denotation of reaction pathway at each step 57
4.1.3 Calculation of free energy pathway 58
4.1.4 Discussion of the reaction activities of different nitrogen configurations 75
4.2 SERS effect of R6G interacting with nitrogen-doped graphene 79
4.2.1 DFT results of Raman enhancement 79
4.2.2 Results of Raman enhancement of different nitrogen configurations 89
4.2.3 Analysis of density of states (DOS) on different nitrogen-doped graphene 95
Chapter 5 Conclusions 100
Chapter 6 Future Work 101
References 102
參考文獻 1. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
2. Hung, C. T.; Yu, N. Y.; Chen, C. T.; Wu, P. H.; Han, X. X.; Kao, Y. S.; Liu, T. C.; Chu, Y. Y.; Deng, F.; Zheng, A. M.; Liu, S. B., Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2014, 2 (47), 20030-20037.
3. Feng, S.; Dos Santos, M. C.; Carvalho, B. R.; Lv, R.; Li, Q.; Fujisawa, K.; Elias, A. L.; Lei, Y.; Perea-Lopez, N.; Endo, M.; Pan, M.; Pimenta, M. A.; Terrones, M., Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci. Adv. 2016, 2 (7), e1600322.
4. Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society 2009, 131 (29), 9890-1.
5. Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z., Can graphene be used as a substrate for Raman enhancement? Nano Letters 2010, 10 (2), 553-61.
6. Lv, R.; Li, Q.; Botello-Mendez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q.; Elias, A. L.; Cruz-Silva, R.; Gutierrez, H. R.; Kim, Y. A.; Muramatsu, H.; Zhu, J.; Endo, M.; Terrones, H.; Charlier, J. C.; Pan, M.; Terrones, M., Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.
7. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-91.
8. Xu, W.; Mao, N.; Zhang, J., Graphene: a platform for surface-enhanced Raman spectroscopy. Small 2013, 9 (8), 1206-24.
9. Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y., Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4 (4), 1790-8.
10. Hassan, F. M.; Chabot, V.; Li, J. D.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A. P., Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 2013, 1 (8), 2904-2912.
11. Qu, L.; Liu, Y.; Baek, J. B.; Dai, L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4 (3), 1321-6.
12. Zhang, N.; Tong, L. M.; Zhang, J., Graphene-Based Enhanced Raman Scattering toward Analytical Applications. Chemistry of Materials 2016, 28 (18), 6426-6435.
13. Zhang, L.; Niu, J.; Dai, L.; Xia, Z., Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 2012, 28 (19), 7542-50.
14. Sun, X. X.; Li, K.; Yin, C.; Wang, Y.; He, F.; Bai, X. W.; Tang, H.; Wu, Z. J., The oxygen reduction reaction mechanism on Sn doped graphene as an electrocatalyst in fuel cells: a DFT study. RSC Adv. 2017, 7 (2), 729-734.
15. Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2011, 6 (1), 205-211.
16. Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced Materials 2013, 25 (35), 4932-7.
17. Kattel, S.; Atanassov, P.; Kiefer, B., A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts. Physical Chemistry Chemical Physics 2014, 16 (27), 13800-6.
18. Kabir, S.; Artyushkova, K.; Kiefer, B.; Atanassov, P., Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts. Physical Chemistry Chemical Physics 2015, 17 (27), 17785-9.
19. Bai, X.; Zhao, E.; Wang, W.; Wang, Y.; Li, K.; Lin, L.; Yang, J.; Sun, H.; Wu, Z., A direct four-electron process on Fe–N3 doped graphene for the oxygen reduction reaction: a theoretical perspective. RSC Adv. 2017, 7 (38), 23812-23819.
20. Rudenko, A. N.; Keil, F. J.; Katsnelson, M. I.; Lichtenstein, A. I., Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study. Phys. Rev. B 2010, 82 (3), 035427.
21. Tristant, D.; Puech, P.; Gerber, I. C., Theoretical Study of Graphene Doping Mechanism by Iodine Molecules. Journal of Physical Chemistry C 2015, 119 (21), 12071-12078.
22. Steele, B. C.; Heinzel, A., Materials for fuel-cell technologies. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 224-231.
23. She, Y.; Chen, J.; Zhang, C.; Lu, Z.; Ni, M.; Sit, P. H.-L.; Leung, M. K., Oxygen Reduction Reaction Mechanism of Nitrogen-Doped Graphene Derived from Ionic Liquid. Energy Procedia 2017, 142, 1319-1326.
24. Lv, R.; dos Santos, M. C.; Antonelli, C.; Feng, S.; Fujisawa, K.; Berkdemir, A.; Cruz-Silva, R.; Elias, A. L.; Perea-Lopez, N.; Lopez-Urias, F.; Terrones, H.; Terrones, M., Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing. Advanced Materials 2014, 26 (45), 7593-9.
25. Park, W. H.; Jung, M., Out-of-Plane Directional Charge Transfer-Assisted Chemical Enhancement in the Surface-Enhanced Raman Spectroscopy of a Graphene Monolayer. Journal of Physical Chemistry C 2016, 120 (42), 24354-24359.
26. Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M. S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J., Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (24), 9281-6.
27. Turley, H. K.; Hu, Z.; Jensen, L.; Camden, J. P., Surface-Enhanced Resonance Hyper-Raman Scattering Elucidates the Molecular Orientation of Rhodamine 6G on Silver Colloids. J. Phys. Chem. Lett. 2017, 8 (8), 1819-1823.
28. Jensen, L.; Schatz, G. C., Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. Journal of Physical Chemistry A 2006, 110 (18), 5973-7.
29. Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S., DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J. Phys. Chem. B 2005, 109 (11), 5012-20.
30. Huang, C. S.; Kim, M.; Wong, B. M.; Safron, N. S.; Arnold, M. S.; Gopalan, P., Raman Enhancement of a Dipolar Molecule on Graphene. Journal of Physical Chemistry C 2014, 118 (4), 2077-2084.
31. Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. science 2016, 351 (6271), 361-5.
32. Song, C.; Zhang, J., Electrocatalytic oxygen reduction reaction. In PEM fuel cell electrocatalysts and catalyst layers, Springer: 2008; pp 89-134.
33. Zhang, J.; Xia, Z.; Dai, L., Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1 (7), e1500564.
34. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. Journal of the American Chemical Society 2014, 136 (11), 4394-403.
35. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R., Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed.
2005, 44 (14), 2132-5.
36. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6 (3), 241-7.
37. Lee, D. H.; Lee, W. J.; Lee, W. J.; Kim, S. O.; Kim, Y. H., Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 2011, 106 (17), 175502.
38. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z., Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 2009, 3 (7), 1952-8.
39. Zhang, L. P.; Xia, Z. H., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. Journal of Physical Chemistry C 2011, 115 (22), 11170-11176.
40. Zhao, J.; Cabrera, C. R.; Xia, Z.; Chen, Z., Single−sided fluorine–functionalized graphene: A metal–free electrocatalyst with high efficiency for oxygen reduction reaction. Carbon 2016, 104, 56-63.
41. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. science 2009, 323 (5915), 760-4.
42. Wu, J.; Ma, L.; Yadav, R. M.; Yang, Y.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P. M., Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2015, 7 (27), 14763-9.
43. Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Jianyi, L. Y.; Ruoff, R. S., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5 (7), 7936-7942.
44. She, Y.; Chen, J.; Zhang, C.; Lu, Z.; Ni, M.; Sit, P. H.-L.; Leung, M. K., Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms. Appl. Energy 2018, 225, 513-521.
45. Yu, L.; Pan, X. L.; Cao, X. M.; Hu, P.; Bao, X. H., Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. Journal of Catalysis 2011, 282 (1), 183-190.
46. Wang, J.; Li, L.; Wei, Z. D., Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene. Acta Physico-Chimica Sinica 2016, 32 (1), 321-328.
47. Baker, M. J.; Hughes, C. S.; Hollywood, K. A., Raman spectroscopy. In Biophotonics: Vibrational Spectroscopic Diagnostics, Morgan & Claypool Publishers: 2016; pp 3-1-3-13.
48. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-Enhanced Raman-Scattering. ‎J. Phys. Condens. Matter 1992, 4 (5), 1143-1212.
49. Schatz, G. C.; Young, M. A.; Van Duyne, R. P., Electromagnetic mechanism of SERS. In Surface-Enhanced Raman Scattering: Physics and Applications, 2006; Vol. 103, pp 19-45.
50. Michaels, A. M.; Jiang, J.; Brus, L., Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J. Phys. Chem. B 2000, 104 (50), 11965-11971.
51. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Specroscopy 2005, 36 (6‐7), 497-509.
52. Morton, S. M.; Jensen, L., Understanding the molecule-surface chemical coupling in SERS. Journal of the American Chemical Society 2009, 131 (11), 4090-8.
53. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
54. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217.
55. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial. Electrochem. 1977, 84 (1), 1-20.
56. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. science 1995, 267 (5204), 1629-32.
57. Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J., Multifunctional Au‐Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Advanced Functional Materials 2010, 20 (17), 2815-2824.
58. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Duyne, R. P., Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. Journal of the American Chemical Society 2007, 129 (24), 7647-56.
59. Rana, F., Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 2008, 7 (1), 91-99.
60. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters 2009, 9 (5), 1752-8.
61. Luo, Z. Q.; Lim, S. H.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y., Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry 2011, 21 (22), 8038-8044.
62. Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T., Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57-62.
63. Sun, Y. S.; Lin, C. F.; Luo, S. T., Two-Dimensional Nitrogen-Enriched Carbon Nanosheets with Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C 2017, 121 (27), 14795-14802.
64. Joo, Y.; Kim, M.; Kanimozhi, C.; Huang, P. S.; Wong, B. M.; Roy, S. S.; Arnold, M. S.; Gopalan, P., Effect of Dipolar Molecule Structure on the Mechanism of Graphene-Enhanced Raman Scattering. Journal of Physical Chemistry C 2016, 120 (25), 13815-13824.
65. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 2006, 27 (15), 1787-99.
66. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, J., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64 (4), 1045.
67. Hamann, D.; Schlüter, M.; Chiang, C., Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43 (20), 1494.
68. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41 (11), 7892-7895.
69. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation: ideas, illustrations and the CASTEP code. ‎J. Phys. Condens. Matter 2002, 14 (11), 2717-2744.
70. Kirkpatrick, S.; Gelatt, C. D., Jr.; Vecchi, M. P., Optimization by simulated annealing. science 1983, 220 (4598), 671-80.
71. BIOVIA, D. S., Materials Studio. San Diego: Dassault Systèmes 2016.
72. Delley, B., From molecules to solids with the DMol3 approach. Journal of Chemical Physics 2000, 113 (18), 7756-7764.
73. BIOVIA, D. S., Sorption. San Diego: Dassault Systèmes 2016.
74. Baskin, Y.; Meyer, L., Lattice Constants of Graphite at Low Temperatures. Phys. Rev. 1955, 100 (2), 544-544.
75. Zhang, K.; Yu, S.; Jv, B.; Zheng, W., Interaction of Rhodamine 6G molecules with graphene: a combined computational-experimental study. Physical Chemistry Chemical Physics 2016, 18 (41), 28418-28427.
76. Adhikesavalu, D. N.; Mastropaolo, D.; Camerman, A.; Camerman, N., Two rhodamine derivatives: 9-[2-(ethoxycarbonyl)phenyl]-3,6-bis-(ethylamino)-2,7-dimethylxanthylium chloride monohydrate and 3,6-diamino-9-[2-(methoxycarbonyl)-phenyl]xanthylium chloride trihydrate. Acta Crystallogr. A 2001, 57 (Pt 5), 657-9.
77. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13 (12), 5188-5192.
78. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A., Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (18), 10037-41.
79. Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 2004, 32 (Web Server issue), W665-7.
80. Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A., PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research 2007, 35 (Web Server issue), W522-5.
81. Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L. E.; Brookes, D. H.; Wilson, L.; Chen, J.; Liles, K.; Chun, M.; Li, P.; Gohara, D. W.; Dolinsky, T.; Konecny, R.; Koes, D. R.; Nielsen, J. E.; Head-Gordon, T.; Geng, W.; Krasny, R.; Wei, G. W.; Holst, M. J.; McCammon, J. A.; Baker, N. A., Improvements to the APBS biomolecular solvation software suite. Protein Science 2018, 27 (1), 112-128.
82. Boukhvalov, D. W.; Son, Y. W., Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling. Nanoscale 2012, 4 (2), 417-20.
83. Hildebrandt, P.; Stockburger, M., Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. Journal of Physical Chemistry 1984, 88 (24), 5935-5944.
84. Weiss, A.; Haran, G., Time-dependent single-molecule Raman scattering as a probe of surface dynamics. J. Phys. Chem. B 2001, 105 (49), 12348-12354.
85. Lombardi, J. R.; Birke, R. L.; Haran, G., Single Molecule SERS Spectral Blinking and Vibronic Coupling. Journal of Chemical Physics 2011, 115 (11), 4540-4545.
86. Yoon, J. C.; Hwang, J.; Thiyagarajan, P.; Ruoff, R. S.; Jang, J. H., Highly Enhanced Raman Scattering on Carbonized Polymer Films. ACS Appl. Mater. Interfaces 2017, 9 (25), 21457-21463.
指導教授 張博凱(Bor Kae Chang) 審核日期 2018-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明