博碩士論文 105324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.118.30.253
姓名 李采璘(Tsai-Ling Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
(MicroRNA In Situ Hybridization with Phosphate-methylated oligonucleotides (nDNA) Probe)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 微核醣核酸(microRNA)是一群非編碼的小核醣核酸分子,序列長度約為18-22個核苷酸,在基因表現的調控上扮演重要的角色;藉由和其目標信使核糖核酸(messanger RNA)的互補序列結合誘發mRNA的降解以調節基因的表現。在先前的許多研究皆指出了不正常的微核糖核酸表現量和一些人類的疾病有相當大的關聯性。因此,特定的核糖核酸可以做為疾病檢測或癒後預測的生物標記分子(biomarkers)。發展具有專高靈敏度及高專一性的檢測平台因而變成一項重要的議題;現今的檢測平台及方法包括原位雜交技術(in situ hybridization) ,逆轉錄聚合酶鏈式反應(qRT-PCR),北方點墨法(northern blotting),微型核糖核酸晶片定序(miRNA microarray profiling);在上述這些技術中,僅有原位雜交技術可以達到同時檢測核醣核酸表現量及觀察在細胞或組織中的分布情形,且保有細胞或組織原有的形態。然而此技術的最大限制在於因微核糖核酸的序列長度太過於短小且核醣核酸本身較脆弱易被降解的特性,若使用一般去氧核醣核酸分子(DNA)做為檢測探針的情況下,檢測結果缺乏專一性。
在本研究中,我們在原位雜交技術中使用的檢測探針是一種由本實驗室開發研究的核酸類似物,一種不帶電中性核酸,是將單股的去氧核醣核酸上的核酸骨幹上帶負電的磷酸根基團修飾上甲基,形成甲基磷酸三酯鍵 (MPTE),使其不帶電;因此與其互補的序列做雜交時,靜電排斥的作用力下降形成較穩定的MPTEDNA/DNA雙股螺旋結構,因而具有較高的檢測專一性。且其疏水性的性質使得中性DNA更容易穿進細胞膜。我們利用此種探針於檢測HCT116人類結腸癌細胞株的外源微核糖核酸(miR-524-5p)及在結腸癌細胞株內oncomiR,內源核醣核酸(miR-21)。實驗結果皆顯示在相同的實驗條件下,修飾過MPTE的探針比起一般DNA探針具有較高的訊號強度,我們可以看到使用優化設計的不帶電中性核酸探針於原位雜交技術檢測微核醣核酸的可行性且可成功的提高檢測訊號且維持檢測專一性。期望藉由建立使用中性DNA於ISH的方法,將此種核甘酸發展成有潛力的疾病治療用藥。
摘要(英) MicroRNAs (miRNAs) are a cluster of small, non-coding RNA molecules, generally 18-22 nucleotides in length, that play important roles in regulating gene expression by binding to the target messenger RNAs (mRNAs) and inducing mRNAs degradation. Previous studies have shown several correlations between aberrant miRNAs expression and a variety of human diseases. Hence, typical miRNAs are considered as diagnostic and prognostic biomarkers. That is to say, the need of developing highly sensitive and specific detection methods is necessary. Current detecting methods include In Situ Hybridization (ISH), Real time PCR, northern blotting, and miRNA microarray profiling technology. Above these methods, only ISH provide miRNA information about both expression level and localization in a single cell level. However, the main challenge of using DNA oligonucleotides as detecting probe is that the results lack of specificity since the small size and the nature fragile characterization of the target miRNA. In this study, we applied an alternative DNA analogue, which contains site-specific neutral methyl phosphotriester internucleotide linkages (MPTE), shows improved the hybridization properties due to the reduction of electrostatic repulsion between the double strands MPTEDNA/RNA duplex. And the lipophilic character allow the probe transport through cell membrane easily. In Situ Hybridization methods were performed to visualize mimic exogenous miR-524-5p we transfected into HCT116 cell lines (human colon cancer cell lines) and the well-known oncomiR in colon cancer cell lines, endogenous miR-21, by 3’-digoxigenin (DIG) labelled MPTE modified probe. Through optimal design of the modification of MPTE, the results demonstrated improved hybridization efficiency while remaining detecting specificity. Based on the success of applying MPTE probe on detecting miRNA through ISH, we expected the potential ability of MPTE modified oligonucleotides developing into theoretic agent.
關鍵字(中) ★ 原位雜交技術
★ 微核醣核酸
★ 核酸分子
★ 專一性
關鍵字(英) ★ In Situ Hybridization
★ microRNA
★ nucleic acid
★ specificity
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 - 1 -
1.1 研究背景 - 1 -
1.2 研究動機 - 2 -
1.3 論文架構 - 2 -
第二章 文獻回顧 - 4 -
2.1 核酸分子介紹 - 4 -
2.1.1 去氧核醣核酸(deoxyribonucleic acid,DNA) - 4 -
2.1.2 核糖核酸(Ribonucleic acid,RNA) - 6 -
2.1.3 微小核糖核酸(microRNA) - 7 -
2.2 原位雜交技術的發展與原理 - 8 -
2.3 核酸類似物 - 10 -
2.3.1 鎖核酸(Lock nucleic acid, LNA) - 10 -
2.3.2 肽核酸(Peptide nucleic acid, PNA) - 12 -
2.3.3 中性去氧核醣核酸( Neutralized DNA, nDNA) - 13 -
2.4 原位雜交技術訊號放大探針/試劑 - 19 -
2.5 反義核酸 (antisense) 調控基因表現 - 22 -
第三章 實驗方法與儀器設備 - 24 -
3.1 實驗藥品 - 24 -
3.2 儀器設備 - 26 -
3.3 實驗方法 - 27 -
3.3.1 細胞培養 - 27 -
3.3.2 外源mimic miRNA轉染 - 28 -
3.3.3 原位雜交技術(In Situ Hybridization, ISH) - 29 -
3.3.3 逆轉錄聚合酶鏈式反應(qRT-PCR) - 30 -
3.3.4 聚丙烯醯胺凝膠電泳 (Polyacrylamide gel electrophoresis, PAGE) - 30 -
第四章 實驗結果與討論 - 31 -
4.1 建立用nDNA合成探針檢測細胞中的miRNA之原位雜合方法-外源性mimic miR-524-5p - 31 -
4.1.1 設計不同修飾數目的nDNA合成探針檢測細胞中的miRNA之原位雜合方法 - 36 -
4.1.2 nDNA合成探針檢測細胞中的miRNA之原位雜合方法之專一性探討 - 38 -
4.2 用nDNA合成探針檢測細胞中的miRNA之原位雜合方法-內源性 miR-21 - 42 -
4.2.1 設計不同修飾位置的nDNA合成探針檢測細胞中的miRNA之原位雜合方法 - 44 -
4.2.2 nDNA合成探針檢測細胞中內源性的miRNA之原位雜合方法之專一性探討 - 47 -
4.2.3 調整細胞透化時間來探討nDNA合成探針對於細胞膜穿透之能力。 - 50 -
4.3 用螢光標定nDNA合成探針檢測細胞中的miRNA之原位雜合方法-內源性 miRNA - 52 -
第五章 結論 - 54 -
參考文獻 1. Pardue, M.L.a.J.G.G., MOLECULAR HYBRIDIZATION OF RADIOACTIVE DNA TO THE DNA OF CYTOLOGICAL PREPARATIONS. 1969.
2. Leslie, A.G.W., S. Arnott, R. Chandrasekaran, and R.L. Ratliff, Polymorphism of DNA double helices. Journal of Molecular Biology, 1980. 143(1): p. 49-72.
3. Alan Herbert , A.R., The Biology of Left-handed Z-DNA. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1996.
4. Fohrer, J., M. Hennig, and T. Carlomagno, Influence of the 2′-Hydroxyl Group Conformation on the Stability of A-form Helices in RNA. Journal of Molecular Biology, 2006. 356(2): p. 280-287.
5. Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993. 75(5): p. 855-862.
6. Perron, M.P. and P. Provost, Protein interactions and complexes in human microRNA biogenesis and function. Frontiers in bioscience : a journal and virtual library, 2008. 13: p. 2537-2547.
7. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-854.
8. MacFarlane, L.-A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics, 2010. 11(7): p. 537-561.
9. Hutvágner, G. and P.D. Zamore, A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science, 2002. 297(5589): p. 2056-2060.
10. Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers. Nat Rev Cancer, 2006. 6(11): p. 857-66.
11. Lin, S. and R.I. Gregory, MicroRNA biogenesis pathways in cancer. Nat Rev Cancer, 2015. 15(6): p. 321-33.
12. G. J. Bauman, J., J. Wiegant, P. Borst, and P. van Duijn, A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Vol. 128. 1980. 485-90.
13. Gupta, D., L.P. Middleton, M.J. Whitaker, and J. Abrams, Comparison of Fluorescence and Chromogenic In Situ Hybridization for Detection of HER-2/neu Oncogene in Breast Cancer. American Journal of Clinical Pathology, 2003. 119(3): p. 381-387.
14. Jorgensen, S., A. Baker, S. Moller, and B.S. Nielsen, Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods, 2010. 52(4): p. 375-81.
15. Matthiesen, S.H. and C.M. Hansen, Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PLoS One, 2012. 7(7): p. e40675.
16. Sinigaglia, C., D. Thiel, A. Hejnol, E. Houliston, and L. Leclère, A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species. Developmental Biology, 2018. 434(1): p. 15-23.
17. WAHLI**, O.B.a.W., A Simplified In Situ Hybridization Protocol Using Non-radioactively Labeled Probes to Detect Abundant and Rare mRNAs on Tissue Sections. BIOCHEMICA, 1998.
18. Pfeifle, D.T.a.C., A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. CHROMOSOMA, 1989.
19. Hui, Y., B.W. Ina, D.R. Stephen, and C. Nirupa, An Optimized Method for In Situ Hybridization with Signal Amplification That Allows the Detection of Rare mRNAs. Journal of Histochemistry & Cytochemistry, 1999. 47(4): p. 431-445.
20. Obika, S., D. Nanbu, Y. Hari, K.-i. Morio, Y. In, T. Ishida, and T. Imanishi, Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
21. Sanjay K. Singh, a.P.N., b Alexei A. Koshkina and Jesper Wengel*a, LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. 1998.
22. Wengel, J., M. Petersen, K.E. Nielsen, G.A. Jensen, A.E. Hakansson, R. Kumar, M.D. Sorensen, V.K. Rajwanshi, T. Bryld, and J.P. Jacobsen, LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids, 2001. 20(4-7): p. 389-96.
23. Fakhfakh, K., O. Marais, X.B.J. Cheng, J.R. Castañeda, C.B. Hughesman, and C. Haynes, Molecular thermodynamics of LNA:LNA base pairs and the hyperstabilizing effect of 5′-proximal LNA:DNA base pairs. AIChE Journal, 2015. 61(9): p. 2711-2731.
24. Petersen, M. and J. Wengel, LNA: a versatile tool for therapeutics and genomics. Trends in Biotechnology. 21(2): p. 74-81.
25. You, Y., B.G. Moreira, M.A. Behlke, and R. Owczarzy, Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res, 2006. 34(8): p. e60.
26. Valoczi, A., C. Hornyik, N. Varga, J. Burgyan, S. Kauppinen, and Z. Havelda, Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Research, 2004. 32(22).
27. Castoldi, M., S. Schmidt, V. Benes, M. Noerholm, A.E. Kulozik, M.W. Hentze, and M.U. Muckenthaler, A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA, 2006. 12(5): p. 913-20.
28. Ritland Politz, J.C., F. Zhang, and T. Pederson, MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(50): p. 18957-18962.
29. Wienholds, E., W.P. Kloosterman, E. Miska, E. Alvarez-Saavedra, E. Berezikov, E. de Bruijn, H.R. Horvitz, S. Kauppinen, and R.H.A. Plasterk, MicroRNA Expression in Zebrafish Embryonic Development. Science, 2005. 309(5732): p. 310-311.
30. Donnem, T., K. Eklo, T. Berg, S.W. Sorbye, K. Lonvik, S. Al-Saad, K. Al-Shibli, S. Andersen, H. Stenvold, R.M. Bremnes, and L.-T. Busund, Prognostic Impact of MiR-155 in Non-Small Cell Lung Cancer Evaluated by in Situ Hybridization. Journal of Translational Medicine, 2011. 9(1): p. 6.
31. Pena, J.T.G., C. Sohn-Lee, S.H. Rouhanifard, J. Ludwig, M. Hafner, A. Mihailovic, C. Lim, D. Holoch, P. Berninger, M. Zavolan, and T. Tuschl, miRNA in situ hybridization in formaldehyde and EDC–fixed tissues. Nature Methods, 2009. 6: p. 139.
32. de Planell-Saguer, M. and M.C. Rodicio, Detection methods for microRNAs in clinic practice. Clinical Biochemistry, 2013. 46(10): p. 869-878.
33. Tomac, S., M. Sarkar, T. Ratilainen, P. Wittung, P.E. Nielsen, B. Nordén, and A. Gräslund, Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
34. Oliveira, K., G.W. Procop, D. Wilson, J. Coull, and H. Stender, Rapid Identification of Staphylococcus aureus Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Journal of Clinical Microbiology, 2002. 40(1): p. 247-251.
35. Paul S. Miller, M.P.R., * Akira Murakami, Kathleen R. Blake, Shwu-Bin Lin, and Cheryl H. Agris, Solid-Phase Syntheses of Oligodeoxyribonucleoside Methylphosphonates1. Biochemistry, 1986.
36. Moody, H.M., M.H. van Genderen, L.H. Koole, H.J. Kocken, E.M. Meijer, and H.M. Buck, Regiospecific inhibition of DNA duplication by antisense phosphate-methylated oligodeoxynucleotides. Nucleic Acids Research, 1989. 17(12): p. 4769-4782.
37. Meade, B.R., K. Gogoi, A.S. Hamil, C. Palm-Apergi, A. van den Berg, J.C. Hagopian, A.D. Springer, A. Eguchi, A.D. Kacsinta, C.F. Dowdy, A. Presente, P. Lonn, M. Kaulich, N. Yoshioka, E. Gros, X.S. Cui, and S.F. Dowdy, Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol, 2014. 32(12): p. 1256-61.
38. Yao-neng, L., WY Chen*, Phosphate-Methylated DNA as Neutralized DNA (nDNA):Synthesis, Properties and Potential Applications. . 2015.
39. Chen, Y.-J.W.C., Studies of thermodynamic and mechanism for neutralized DNA (nDNA)/DNA and DNA/DNA duplex formation. 2016

40. Anderson, C.M., B. Zhang, M. Miller, E. Butko, X. Wu, T. Laver, C. Kernag, J. Kim, Y. Luo, H. Lamparski, E. Park, N. Su, and X.J. Ma, Fully Automated RNAscope In Situ Hybridization Assays for Formalin-Fixed Paraffin-Embedded Cells and Tissues. J Cell Biochem, 2016. 117(10): p. 2201-8.
41. Tubbs, R.R., H. Wang, Z. Wang, E.C. Minca, B.P. Portier, A.M. Gruver, C. Lanigan, Y. Luo, J.R. Cook, and X.-J. Ma, Ultrasensitive RNA In Situ Hybridization for Detection of Restricted Clonal Expression of Low-Abundance Immunoglobulin Light Chain mRNA in B-Cell Lymphoproliferative Disorders. American Journal of Clinical Pathology, 2013. 140(5): p. 736-746.
42. Lu, J. and A. Tsourkas, Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Research, 2009. 37(14).
43. Rinaldi, C. and M. J. A. Wood, Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Vol. 14. 2017.
44. Elmen, J., M. Lindow, A. Silahtaroglu, M. Bak, M. Christensen, A. Lind-Thomsen, M. Hedtjarn, J.B. Hansen, H.F. Hansen, E.M. Straarup, K. McCullagh, P. Kearney, and S. Kauppinen, Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research, 2008. 36(4): p. 1153-1162.
45. Zhang, Y., Z. Qu, S. Kim, V. Shi, B. Liao, P. Kraft, R. Bandaru, Y. Wu, L.M. Greenberger, and I.D. Horak, Down-modulation of cancer targets using locked nucleic acid (LNA)-based antisense oligonucleotides without transfection. Gene Therapy, 2011. 18(4): p. 326-333.
46. Stein, C.A., J.B. Hansen, J. Lai, S. Wu, A. Voskresenskiy, A. Høg, J. Worm, M. Hedtjärn, N. Souleimanian, P. Miller, H.S. Soifer, D. Castanotto, L. Benimetskaya, H. Ørum, and T. Koch, Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Research, 2010. 38(1): p. e3-e3.
47. Elmen, J., M. Lindow, S. Schutz, M. Lawrence, A. Petri, S. Obad, M. Lindholm, M. Hedtjarn, H.F. Hansen, U. Berger, S. Gullans, P. Kearney, P. Sarnow, E.M. Straarup, and S. Kauppinen, LNA-mediated microRNA silencing in non-human primates. Nature, 2008. 452(7189): p. 896-9.
48. Gebert, L.F.R., M.A.E. Rebhan, S.E.M. Crivelli, R. Denzler, M. Stoffel, and J. Hall, Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Research, 2014. 42(1): p. 609-621.
49. Paul S. Miller, L.T.B., and Paul 0. P. Ts’o, Effects of a Trinucleotide Ethyl Phosphotriester, Gmp( Et)Gmp( Et)U, on Mammalian Cells in Culture. B I O C H E M I S T R Y, 1977. 16: p. 9.
50. Cheryl H. Agris, K.R.B., Paul S. Miller,* M. Parameswara Reddy,§ and Paul O. P. Ts’o, Inhibition of Vesicular Stomatitis Virus Protein Synthesis and Infection by Sequence-Specific Oligodeoxyribonucleoside Methylphosphonates1. biochemistry, 1986. 25.
51. Moody, H., P. Quaedflieg, L. Koole, M. van Genderen, H. Buck, L. Smit, S. Jurriaans, J. Geelen, and J. Goudsmit, Inhibition of HIV-1 infectivity by phosphate-methylated DNA: retraction. Science, 1990. 250(4977): p. 125-126.
52. O Urbanek, M., A. U Nawrocka, and W. J Krzyzosiak, Small RNA Detection by in Situ Hybridization Methods. Vol. 16. 2015. 13259-13286.
53. Fontenete, S., D. Carvalho, N. Guimaraes, P. Madureira, C. Figueiredo, J. Wengel, and N.F. Azevedo, Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol, 2016. 100(13): p. 5897-906.
54. Singh, U., N. Keirstead, A. Wolujczyk, M. Odin, M. Albassam, and R. Garrido, General principles and methods for routine automated microRNA in situ hybridization and double labeling with immunohistochemistry. Vol. 89. 2013.
55. Yamamichi, N., R. Shimomura, K. Inada, K. Sakurai, T. Haraguchi, Y. Ozaki, S. Fujita, T. Mizutani, C. Furukawa, M. Fujishiro, M. Ichinose, K. Shiogama, Y. Tsutsumi, M. Omata, and H. Iba, Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res, 2009. 15(12): p. 4009-16.
56. Zhao, J., Y. Zhang, and G. Zhao, Emerging role of microRNA-21 in colorectal cancer. Cancer Biomark, 2015. 15(3): p. 219-26.
57. Medina, P.P., M. Nolde, and F.J. Slack, OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 2010. 467(7311): p. 86-90.
58. You, Y., B.G. Moreira, M.A. Behlke, and R. Owczarzy, Design of LNA probes that improve mismatch discrimination. Nucleic Acids Research, 2006. 34(8).
59. Bommarito, S., N. Peyret, and J. SantaLucia, Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Research, 2000. 28(9): p. 1929-1934.
60. Silahtaroglu, A.N., D. Nolting, L. Dyrskjot, E. Berezikov, M. Moller, N. Tommerup, and S. Kauppinen, Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc, 2007. 2(10): p. 2520-8.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2018-5-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明