博碩士論文 105324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.139.97.157
姓名 林宜萱(Yi-Xuan Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 通過水熱和溶劑熱法合成銅奈米晶體之研究
(Study on the Synthesis of Copper Nanocrystals via Hydrothermal and Solvothermal Reduction)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究★ 含銅鎳之錫薄膜線之電致遷移研究
★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究★ 電遷移誘發銅墊層消耗動力學之研究
★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文為還原銅奈米晶體各種形貌之研究,利用水熱法及溶劑熱還原方法以合成各種銅奈米晶體,在調控封端劑濃度及不同反應時間等參數控制下,試圖找出最佳合成反應條件,藉由掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀察及分析其銅奈米合成之表面形貌,結果發現合成出不同形貌之產物,分別檢測出有銅奈米顆粒(copper nanoparticle)、銅奈米立方體(copper nanocube)、銅奈米四面體(copper nanotetrahedron)、銅奈米角椎體(copper nanopyramid)、銅奈米棒(copper nanorod)、銅奈米線(copper nanowire)等形貌,再經以X光能量散佈光譜(Energy-dispersive X-ray spectroscopy, EDS)分析所製備不同形貌銅奈米晶體之成分,並利用EDS的素像(mapping)功能,瞭解產物組成分布狀況,顯示出這這些銅奈米晶體皆無氧化及氯化且是純銅奈米晶體結構。同時利用image J軟體分析各項銅奈米晶體形貌之數量百分比(%)及尺寸大小之分布。
在合成奈米銅之反應條件下,其一在封端劑濃度固定與不同反應時間下,可以產生不同奈米銅之量與大小;其二是合成銅奈米時間固定與不同封端劑濃度固定下,可以產生不同奈米銅形貌之量與大小。本研究成功地以水熱法及溶劑熱還原方法合成出銅奈米晶體的各種形貌,從其產生多樣銅奈米晶體形貌量數量百分比與尺寸大小,可以導引並提出銅原子在液相還原過程中晶粒成長演變的過程最佳合成反應條件,以提供未來銅奈米線基礎研究及電子產業銅奈米材料應用之基礎。
摘要(英) In this thesis is to study the various morphologies of copper nanocrystals. Hydrothermal method and solvothermal reduction method are used to synthesize various copper nanocrystals. Optimum synthesis reaction conditions, by scanning electron microscope (SEM) to observe and analyze the surface morphology of copper nano-synthesis, it was found that the synthesis of products with different shapes, copper nanoparticles were detected copper nanoparticle, copper nanocube, copper nanotetrahedron, copper pyramid, copper nanorod, copper nanowire, and then analyze the components of the prepared copper nanocrystals with different shapes by Energy-dispersive X-ray spectroscopy (EDS), and use the mapping function of EDS to understand the product. The composition distribution shows that these copper nanocrystals are free from oxidation and chlorination and are pure copper nanocrystal structures. The image J software was used to analyze the number percentage (%) and size distribution of each copper nanocrystal morphology.
Under the reaction conditions for synthesizing copper nanoparticles, one can produce different amounts and sizes of copper under fixed concentration of capping agent and different reaction time; Under fixed conditions, different amounts and sizes of copper topography can be produced. In this study, various morphologies of copper nanocrystals were successfully synthesized by hydrothermal method and solvothermal reduction method. From the variety of copper nanocrystal morphology, quantity percentage and size, it can be guided and proposed that copper atoms in liquid The optimum synthetic reaction conditions for the process of grain growth and evolution during the phase reduction process will provide the basis for future basic research on copper nanowires and the application of copper nanomaterials in the electronics industry.

關鍵字(中) ★ 奈米晶體
★ 水熱法
★ 溶劑熱法
關鍵字(英) ★ Nanocrystals
★ Hydrothermal
★ Solvothermal
論文目次 Abstract (Traditional Chinese)……………………………………………………Ⅳ
Abstract (English) …………………………………………………………………..Ⅴ
致謝…………………………….……………………………………………………Ⅵ
Table of contents……………………………………………………...………….. Ⅶ
List of figures ……………………………………………………........……………. Ⅸ
List of tables……………………………………………………..........……..………Ⅺ
Chapter 1: background………………………………………………………………1
1.1 Researches and Applications of Copper Metal Nanowires………………………1
1.2 Discussion on the Synthesis of Copper Nanocrystals………………………...…6
1.3 Morphology of Copper Nanocrystals………………………………………...…11
Chapter 2: Moltivation………………………………………………………..……17
Chapter 3: Experiment procedure…………………………………………………18
3.1 Pre-test of Copper Nanocrystal Synthesis Reaction - Hydrothermal Method….18
3.2 Pre-test of Copper Nanocrystal Synthesis Reaction - Solvothermal Method…..18
3.3 Synthesis of Copper Nanocrystals Particles by Hydrothermal Single System Combined with Solvent Interaction Cleaning……………………………………….18
3.4 Sample Preparation for Scanning Electron Microscopy Analysis of Copper Nanocrystalline Particles……………………………………………………..……..20
3.5 Using image J software to analyze the number distribution and size of various copper morphology…………………………………………………………………21
Chapter 4: Results…………………………………………………………………..26
4.1 Pre-test of copper nanocrystal synthesis reaction (pre-test) – hydrothermal method………………………………………………………………..…………….26
4.2 Pre-test of Copper Nanocrystal Synthesis Reaction - Solvothermal Method…..28
4.3 Synthesis of Copper Nanocrystals Particles by Hydrothermal Single System Combined with Solvent Interaction Cleaning………………………………………32
4.4 Material Analysis - Product Composition………………………………………34
4.5 Analysis of the morphology of synthesized copper nanoparticles under scanning electron microscope…………………………………………………………..…….40
4.6 Use Image J software to analyze the number distribution and size of each shape..41
Chapter 5: Discussions…………………………………………………...…………60
5.1 The morphology of copper nanoparticles synthesized by a single process parameter……………………………………………………………………………60
5.2 Impact of HDA in the hydrothermal process……………………………………61
5.3 The number percentage and size of various copper nano-morphologies at different HDA concentrations and reaction times…………………………………………….62
5.4 Comparative analysis of various copper nanocrystals morphology sizes and previous studies……………………………………………………………………..67
Chapter 6: Conclussions…………………………………………………...……….70
Acknowledgement…………………………………………………………………..71
References……………………………………………………………………..…….71
Appendix……………………………………………………………………..…...…77

參考文獻 [1] Aaron D. Brumbaugh, Katelyn A. Cohen, and Sarah K. St. Angelo, “Ultrasmall Copper Nanoparticles Synthesized with a Plant Tea Reducing Agent”, ACS Sustainable Chemistry & Engineering, 2, 1933-1939, 2014.
[2] Abdullah Khalil, Raed Hashaikeh, and Mustapha Jouiadm, “Synthesis and morphology analysis of electrospun copper nanowires”, Journal Materials Science, 49, 3052-3065, 2014.
[3] Ayesha Khan, Audil Rashid, Rafia Younas, and Ren Chong, “A chemical reduction approach to the synthesis of copper nanoparticles”, International Nano Letters,6 ,21-26, 2016.
[4] Antonio Jimenez-Rodr, Eduardo Sotelo, Lidia Mart, Yves Huttel, Maria Ujue Gonzalez, Alvaro Mayoral, Jose Miguel Garcia Martin, Marcelo Videa and Jorge L. Cholula-Diaz, “Green synthesis of starch-capped Cu2O nanocubes and their application in the direct electrochemical detection of glucose”, RSC Advances, 11, 13711-13721, 2021.
[5] Bebeh Wahid Nuryadin, Moch. Purwanto, Hasniah Aliah, Yudha Satya Perkasa, and Ea Cahya Septia Mahen, “Effect of Synthesis Temperature on the Morphology and Electrical Properties of Solution-Grown Copper Nanowires (CuNWs)”. AIP Conference Proceedings, 1708, 070009, 2016.
[6] Cosimo Anichini, Włodzimierz Czepa, Alessandro Aliprandi, Valentina Girelli Consolaro, Ovidiu Ersen, Artur Ciesielski, and Paolo Samorì, “Synthesis and characterization of ultralong copper sulfide nanowires and their electrical properties”, Journal of Materials Chemistry C, 9, 12133, 2021.
[7] Choon Hwee Bernard Ng and Wai Yip Fan, “Facile Synthesis of Single-Crystalline γ-CuI Nanotetrahedrons and Their Induced Transformation to Tetrahedral CuO Nanocages”, Journal of Materials Chemistry C, 111, 9166-9171, 2007.
[8] Dedi Mardiansyah, Kuwat Triyana, and Harsojo, “Study on Growth Mechanism of Cu Nanowires and Its Application as Transparent Conducting Electrode”, Indonesian Journal of Chemistry, 19(1), 160-165, 2019.
[9] Dong Han, Xuan Li, Xinyi Zhao, Jinkui Feng, and Yitai Qian, “Hydrothermal synthesis of copper nanowires as advanced conductive agents for lithium ion batteries”, Journal of Nanoscience and Nanotechnology, 15(9), 7177-7180, 2015
[10] Derrick Mott, Jeffrey Galkowski, Lingyan Wang, Jin Luo, and Chuan-Jian Zhong, “Synthesis of Size-Controlled and Shaped Copper Nanoparticles”, Langmuir, 23, 5740-5745, 2007.
[11] Elisabeta I. SZERB, Liliana CSEH, Ana-Maria PANA, Radu BANICA, Petrica LINUL, Marcel LAZAROVICI, Carmen CREŢU, Laurentiu DEMETROVICI, Cosmin LOCOVEI, Georgeta M. SIMU, Nicolae STRIMBEANU and Otilia COSTISOR, “Synthesis and characterization of Copper nanocubes from waste complex
Catalyst”, Rev. Roum. Chim., 62(4-5), 433-438, 2017.
[12] Fan Cui, Yi Yu, Letian Dou, Jianwei Sun, Qin Yang, Christian Schildknecht, Kerstin Schierle-Arndt, and Peidong Yang, “Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors”, Nano Letters, 15,7610-7615, 2015.
[13] Fang Qian, Pui Ching Lan, Tammy Olson, Cheng Zhu, Eric B. Duoss, Christopher M. Spadaccini , and T. Yong-Jin Han, “Multiphase separation of copper nanowires”, Chemical Communications, 52, 11627-11630, 2016.
[14] Hyunhong Kim, Seong-Hyeon Choi, Mijung Kim, Jang-Ung Park, Joonwon Bae, and Jongnam Park, “Seed-mediated synthesis of ultra-long copper nanowires and their application as transparent conducting electrodes”, Applied Surface Science, 422, 731-737, 2017
[15] Huizhang Guo, Na Lin, Yuanzhi Chen, Zhenwei Wang, Qingshui Xie, Tongchang Zheng, Na Gao, Shuping Li, Junyong Kang, Duanjun Cai, and Dong-Liang Peng, “Copper Nanowires as Fully Transparent Conductive Electrodes”, Scientific Reports. 3, 2323. 2013.
[16] Haiyan Xiang, Tingting Guo, Minjie Xu, Haozi Lu, Song Liu, and Gang Yu, “Ultrathin Copper Nanowire Synthesis with Tunable Morphology Using Organic Amines for Transparent Conductors”, ACS Applied Nano Materials, 1(8), 3754-3759, 2018.
[17] Han, Dong, Li Xuan, Zhao Xinyi, Feng Jinkui, Qian, Yitai, “Hydrothermal Synthesis of Copper Nanowires as Advanced Conductive Agents for Lithium Ion Batteries”, Journal of Nanoscience and Nanotechnology, 15(9), 7177-7180, 2015.
[18] Hardev Singh Virk, “Fabrication and Characterization of Copper Nanowires”, Nanowires - Implementations and Applications, 2011. (DOI: 10.5772/16382)
[19] Hardev Singh Virk, Kamal Kishore, and Vishal Baloria, “Fabrication of Copper Nanowires by Electrodeposition using Anodic Alumina and Polymer Templates”, Journal of Nanomaterial Research, 10, 63-67, 2010.
[20] Hyungsoo Choi and Sung-Ho Park, “Seedless growth of free-standing copper nanowires by chemical vapor deposition”, Journal of the American Chemical Society, 4(126)20, 6248–6249, 2004.
[21] Hong Shang, Zicheng Zuo, Liang Li, Fan Wang, Huibiao Liu, Yongjun Li, and Prof. Yuliang Li, “Ultrathin Graphdiyne Nanosheets Grown In Situ on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes”, A Journal of the German Chemical Society, 2017.
[22] He Zhanga, Shang Wanga, Yanhong Tiana, Jiayue Wena, Chunjin Hanga, Zhen Zhenga, Yilong Huanga, Su Dingb, and Chenxi WangaaSta, “High-efficiency extraction synthesis for high-purity copper nanowires andtheir applications inflexible transparent electrodes”, Nano Materials Science, 2,164-171, 2020.
[23] Hong-Jie Yang, Sheng-Yan He, Hsin-Lung Chen, and Hsing-Yu Tuan, “Monodisperse Copper Nanocubes: Synthesis, Self-Assembly, and Large-Area Dense-Packed Films”, Chemistry of Materials, 26(5), 1785-1793, 2014.
[24] Hong-Jie Yang, Sheng-Yan He, and Hsing-Yu Tuan, “Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications”, Langmuir, 30, 602-610, 2014.
[25] Josef Mock, Marco Bobinger, Christian Bogner, Paolo Lugli, and Markus Becherer, “Aqueous synthesis, degradation, and encapsulation of copper nanowires for transparent electrodes”, Nanomaterials, 8, 767, 2018.
[26] Jhon L. Cuya Huaman, Iori Urushizaki, and Balachandrn Jeyadevan, “Large-scale Cu nanowire synthesis by PVP-ethylene glycol route”, Journal of Nanomaterials, 2018.
[27] Jing C Zhou, Carissa M Soto1, Mu-San Chen, Michael A Bruckman, Martin H Moore, Edward Barry, Banahalli R. Ratna, Pehr E Pehrsson, Bradley R Spies and Tammie S Confer, “Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires”, Journal of Nanobiotechnology, 10(18), 2012.
[28] Jinbao Luo, Jiewu Cui,, Yan Wang,,DongboYu,,Yongqiang Qin,,Hongmei Zheng,, Xia Shu, Hark HoeTan,, Yong Zhang,, Yucheng Wu, “Metal-organic framework-derived porous Cu2O/Cu@C core-shell nanowires and their application in uric acid biosensor”, Applied Surface Science, 506, 2020.
[29] Kwangjin An and Gabor A. Somorjai, “Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis”, ChemCatChem, 2012.
[30] Marya Ahmed, Chapter 16 - Nanomaterial synthesis, Polymer Science and Nanotechnology-Fundamentals and Applications, 361-399, 2020.
[31] Myung Jun Kim, Samuel Alvarez, Zihao Chen, Kristen A. Fichthorn, and Benjamin J. Wiley, “Single-crystal electrochemistry reveals why metal nanowires grow”, Journal of the American Chemical Society, 140, 14740-14746, 2018.
[32] Manoj B. Gawande, Anandarup Goswami, Francois-Xavier Felpin, ̧ Tewodros Asefa, Xiaoxi Huang, Rafael Silva, Xiaoxin Zou, Radek Zboril, and Rajender S. Varma, “Cu and Cu-based nanoparticles: synthesis and applications in catalysis”, Chemical Reviews, 116, 3722-3811, 2016.
[33] Ningning Zeng, Shuguang Fan, Jingyi Ma, Yujuan Zhang, Shengmao Zhang, Pingyu Zhang, Zhijun Zhang, “Synthesis and application of copper nanowires and silver nanosheet-coated copper nanowires as nanofillers in several polymers”, Nanowire -New insights, Chapter 1, 2017.
[34] Oleksii Ohiienko and Young-Jei Oh, “Preparation of narrow copper nanowires with less oxidized surface for flexible and transparent electrodes under octadecylamine”, Materials Chemistry and Physics, 246, 2020.
[35] Qi-Jie Xu, Xiao-Hong Li, Sheng-Mao Zhang, and Zhi-Jun Zhang, “Preparation and characterization of copper nanowire/polyamide 6 nanocomposites andits properties”, Journal of Macromolecular Science, Part A. Pure and Applied Chemistry, 51(7), 598-603, 2014
[36] Ranlong Wang and Haibo Ruan, "Synthesis of copper nanowires and its application to flexible transparent electrode”, Journal of Alloys and Compounds, 656, 936-943 2016.
[37] R. Betancourt-Galindo, P. Y. Reyes-Rodriguez, B. A. Puente-Urbina, C. A. Avila-Orta, O. S. Rodríguez-Fernández, G. Cadenas-Pliego, R. H. Lira-Saldivar, and L. A. García-Cerda, “Synthesis of Copper Nanoparticles by Thermal Decomposition and Their Antimicrobial Properties”, Journal of Nanomaterials, 2014
[38] Rémi Dingreville, JianminQu, and Mohammed Cherkaoui, “Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films”, Journal of the Mechanics and Physics of Solids, 53(8), 1827-1854, 2005.
[39] Sulekh Chandra, Avdhesh Kumar, and Praveen Kumar Tomar, “Synthesis and characterization of copper nanoparticles by reducing agent”, Journal of Saudi Chemical Society, 18, 149-153, 2014.
[40] Sudipa Panigrahi, Subrata Kundu, Sujit Kumar Ghosh, Sudip Nath, Snigdhamayee Praharaj, Soumen Basu, Tarasankar Pal, “Selective one-pot synthesis of copper nanorods under surfactantless”, Polyhedron, 25(5),1263-1269, 2006.
[41] Thi My Dung Dang, Thi Tuyet Thu Le, Eric Fribourg-Blanc, and Mau Chien Dang, “Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2, 2011.
[42] Tao Gao, Guowen Meng, Yewu Wang, Shuhui Sun, and Lide Zhang, “Electrochemical synthesis of copper nanowires”, Journal of Physics Condensed Matter, 14, 355-363, 2002.
[43] Tan Zhang, Farm Daneshvar, Shaoyang Wang, and Hung-JueSue, “Synthesis of oxidation-resistant electrochemical-active copper nanowires using phenylenediamine isomers” , Materials and Design, 162, 154-161, 2019.
[44] Ting Lin, Sze Kee Tam, Xijun Hu, and Ka Ming Ng, “A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films”, Journal of Nanoparticle Research, 23, 2021.
[45] Tan Zhang, Wen-Yi Hsieh, Farhad Daneshvar, Cong Liu, Syang-Peng Rwei, and Hung-Jue Sue, “Copper(i)–alkylamine mediated synthesis of copper nanowires” Nanoscale, 12, 17437, 2020.
[46] Vu Binh Nam and Daeho Lee, “Copper nanowires and their applications for flexible, transparent conducting films: a review”, Nanomaterials, 6(47), 2016.
[47] Vittorio Scardaci, “Copper nanowires fortransparent electrodes: properties, challenges and applications”, Applied Science, 11(8035), 2021
[48] Wen-Yin Ko, Wei-Hung Chen, Shien-Der Tzeng, Shangjr Gwo, and Kuan-Jiuh Lin, “Synthesis of Pyramidal Copper Nanoparticles on Gold Substrate”, Chemistry of Materials, 18, 6097-6099, 2006.
[49]Xiaojun Z hang, Dongen Zhang, Xiaomin Ni, and Huagui Zheng, “One-step preparation of copper nanorods with rectangular cross sections”, Solid State Communications, 139(8), 412-414, 2006.
[50]Xingsheng Li, Yumeng Wang, Chengri Yin and Zhenxing Yin, “Copper nanowires in recent electronic applications: progress and perspectives”, Journal of Materias Chemistry C, 3, 2020.
[51] Xinmei Liu, Chunyang Yang, Wenlong Yang, Jiaqi Lin, Chen Liang, and Xu Zhao, “One-pot synthesis of uniform Cu nanowires and their enhanced non-enzymatic glucose sensor performance”, Journal of Materials Science, 56, 5520-5531, 2021.
[52] Yihai Wang, Penglei Chen, and Minghua Liu, “Synthesis of well-defined copper nanocubes by a one-pot solution process”, Nanotechnology, 17,2006.
[53] Yu Shi, Hong Li, Liquan Chen, and Xuejie Huang, “Obtaining ultra-long copper nanowires via a hydrothermal process”, Science and Technology of Advanced Materials, 6, 761-765, 2005.
[54] Yaxiong Wang, Ping Liu, Baoqing Zeng, Liming Liu, and Jianjun Yang, “Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes”, Nanoscale Research Letters, 13(78), 2018.
[55] Yifan Zheng, Nana Chen, Chunxiao Wang, Xiaoping Zhang, and Zongjian Liu, “Oleylamine-Mediated Hydrothermal Growth of Millimeter-Long Cu Nanowires and Their Electrocatalytic Activity for Reduction of Nitrate”, Nanomaterials, 8, 192, 2018.
[56] Yuxin Zhao, Ying Zhang, Yanpeng Li, Zhaoyang Heand, and Zifeng Yan, “Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs)”, RSC Advances, 2,11544-11551, 2012.
[57] Zhaoping Liu, You Yang, Jianbo Liang, Zhaokang Hu, Shu Li, Sheng Peng, and Yitai Qian, “Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process”, The Journal of Physical Chemistry B, 107, 46, 12658-12661, 2003.
[58] Zongwen Liu and Yoshio Bando, “A novel method for preparing copper nanorods and nanowires”, Advances Materials, 15, 303-305, 2003.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2022-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明