博碩士論文 105324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.226.251.22
姓名 龔元琪(Yuan-Chi Kung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析
(Simulation of CO2 Capture in Flue Gas from a Power Plant and Concentrating Syngas after Oxy-Fuel Combustion and Dehydration Combined with Design and Analysis of Simulation Experiments by Pressure Swing Adsorption Processes)
相關論文
★ 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究★ 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究
★ 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析★ 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗
★ 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析★ 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為減少二氧化碳排放量,避免溫室氣體對環境影響持續惡化,除了以法規政策限制產業界之二氧化碳排放總量外,亦可透過提高濃縮後二氧化碳之濃度,使其成為高附加價值產品來提供新應用途徑,以達成循環經濟(Circular economy)之工業應用。
變壓吸附法為一連續性循環程序氣體吸附分離技術,利用吸附劑對氣體混合物中各成分之吸附能力的不同而產生的吸附選擇性來篩選氣體,並利用高壓吸附、低壓脫附來得到高濃度的產物。
本研究首先為確認模擬程式之可靠度,建置一雙塔六步驟PSA程序實驗設備進行純化氣化合成氣經過富氧燃燒及除水後之氣體,並將兩者結果進行驗證。將研究內容分為兩部分,選用UOP 13X沸石作為吸附劑。第一部分為利用三塔九步驟變壓吸附系統,以亞臨界燃煤鍋爐排煙氣,經除硫、除水後之15%二氧化碳與85%氮氣為組成進料,處理氣體量為72.3 L/min (NTP),進行模擬,得到在進料壓力2.6 atm、抽真空壓力0.05 atm、進料溫度298.14 K、高壓吸附時間390秒、同向減壓時間40秒、逆向減壓時間300秒、壓力平衡時間50秒下,得塔頂產物氮氣純度98.35% ,回收率94.06%,塔底產物二氧化碳純度89.94%,回收率89.54%,機械能耗則為1.38 GJ/tonne-CO2。
第二部分利用四塔二十步驟變壓吸附程序純化15 MW氣化爐合成氣經富氧燃燒及除水之氣體中二氧化碳。生質物/粉煤於氣化爐中氣化產生之合成氣經過富氧燃燒及除水後,其組成約為95% - 97.4%二氧化碳濃度氣體及少量氮氣、氬氣,我們以氮氣取代氬氣並保守以95%二氧化碳及5%氮氣作為進料,藉由探討塔直徑和高度比對進料流量、塔底產物二氧化碳純度及回收率之影響,得到在塔直徑131.678 cm,塔長407 cm,進料壓力5 atm,抽真空壓力0.238 atm,進料溫度338.14 K下,進料流量為111900 L/min (STP),塔底產物二氧化碳純度99.999944%,回收率9.574%,機械能耗則為2.53 GJ/tonne-CO2。最後,為有效找出最佳操作條件,利用實驗設計(Design of Experiment, DOE),結合變異數分析(Analysis of Variance, ANOVA)和反應曲面法(Response Surface Methodology, RSM)二階模型,進行中央合成設計實驗(Central Composite Design, CCD),並結合迴歸分析以加速確定操作條件之範圍,有效分析變因結果進行模擬,得到在進料壓力5.3 atm,抽真空壓力0.2 atm,進料溫度343.14 K,步驟5/10/15/20時間55秒下,得塔底產物純度99.999984%,回收率11.0525%,機械能耗2.33 GJ/tonne-CO2。
摘要(英) In order to reduce carbon dioxide emissions that worsen our environment continuously, we could concentrate CO2 and let it become the high value-added product to improve it.
To validate the accuracy of PSA program, we verified the simulation with the experiment of 2-bed 6-step PSA process at first. Next, this study could be taken into 2 parts and both of them used UOP 13X zeolite as adorbent. The first part of study, a 3-bed 9-step pressure swing adsorption(PSA) process for flue gas after desulphurization and water removal (15% CO2, 85% N2) of subcritical coal-fired power plant was designed. After simulation, we obtained a bottom product CO2 purity at 89.94%, a recovery at 89.54% while at feed pressure 2.6 atm, vacuum pressure 0.05 atm, feed temperature 298.14 K, adsorption time 390 s, cocurrent time 40 s, vacuum time 300 s, and pressurization equilibrium time 50 s. Also, the calculation of energy consumption is important. The mechanical energy consumption was estimated to be 1.38 GJ/tonne-CO2.
In the second part of this study, based on the syngas gas emission rate of a 1 kW power plant, a scaled up 15 MW PSA process was designed to capture CO2 with over 99.9% high concentration CO2 product. Since the syngas of a gasifier after oxy-fuel combustion and dehydration produces 95% - 97.4% CO2, we used 95% CO2 and 5% N2 as our inlet gas. After simulation, we obtained a bottom product CO2 purity at 99.999944%, a recovery at 9.574%, a top product N2 purity at 98.44%, and a recovery at 94.09% while at feed pressure 5 atm, vacuum pressure 0.238 atm, feed temperature 338.14 K, bed diameter 131.678 cm, and bed length 407 cm. The mechanical energy consumption was estimated to be 2.53 GJ/tonne-CO2. At last, in order to find the optimal operating conditions, we combined the results of 15 MW PSA process with design and analysis of simulation experiments. After analysis, we obtained a bottom product CO2 purity at 99.999984%, a recovery at 11.0525% while at feed pressure 5.3 atm, vacuum pressure 0.2 atm, feed temperature 343.14 K, and step 5/10/15/20 time 55 s as the optimal results. The mechanical energy consumption was estimated to be 2.33 GJ/tonne-CO2.
關鍵字(中) ★ 變壓吸附
★ 實驗設計分析
★ 二氧化碳捕獲
★ 高純度二氧化碳
關鍵字(英) ★ Pressure Swing adsorption
★ Design and Analysis of Simulation Experiments
★ CO2 capture
★ High purity CO2
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 xi
表目錄 xiv
第一章、 緒論 1
第二章、 簡介及文獻回顧 7
2-1 吸附之簡介 7
2-1-1 吸附基本原理 7
2-1-2 吸附劑及其選擇性 9
2-2 文獻回顧 11
2-2-1 PSA程序之發展與改進 11
2-2-2 理論之回顧 16
2-3文獻回顧與研究目的 18
2-3-1 文獻回顧 18
2-3-2 研究目的 24
第三章、 理論 25
3-1基本假設 26
3-2統制方程式 27
3-3吸附平衡關係式 32
3-3-1 等溫吸附平衡關係式 32
3-3-2 質傳驅動力模式(Driving force model) 33
3-3-3 吸附熱關係式 33
3-4參數推導 34
3-4-1 軸向分散係數(Axial dispersion coefficient) 34
3-4-2 熱傳係數(Overall heat-transfer coefficient) 37
3-4-3 線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 40
3-5邊界條件與流速 44
3-5-1 邊界條件與節點流速 44
3-5-2 閥公式 45
3-6求解步驟 46
第四章、 等溫平衡吸附曲線與吸脫附曲線 49
4-1吸附平衡(Adsorption equilibrium) 50
4-1-1 氣體與吸附劑性質 50
4-1-2 等溫平衡吸附曲線(Isotherm) 52
4-2吸附動力學(Adsorption kinetics) 56
4-2-1 突破曲線模擬驗證 56
4-2-2 脫附實驗模擬驗證 60
第五章、 製程描述 63
5-1雙塔六步驟變壓吸附程序 66
5-2三塔九步驟變壓吸附程序 68
5-3四塔二十步驟變壓吸附程序 71
5-4能耗及產率計算公式 74
第六章、 數據分析與結果討論 76
6-1雙塔六步驟變壓吸附法純化合成氣中二氧化碳之驗證 76
6-1-1抽真空壓力對雙塔六步驟PSA製程之驗證 77
6-2煙道氣進料三塔九步驟變壓吸附程序之模擬 79
6-2-1 利用三塔分離程序之各階段質量平衡與流率 81
6-3氣化合成氣進料四塔二十步驟變壓吸附程序之模擬 84
6-3-1 氣化合成氣進料四塔二十步驟變壓吸附程序初步模擬結果 85
6-4氣化合成氣進料四塔二十步驟變壓吸附程序模擬之實驗設計分析 88
6-4-1 殘差分析圖(Analysis of residual plots) 89
6-4-2 變異數分析(Analysis of Variance, ANOVA) 92
6-4-3 主效用圖(Main effect plots)與交互作用圖(Interaction plots) 96
6-4-4標準化效應的常態機率圖(Normal plot of the standardized effects) 99
6-4-5 反應曲面法(Response Surface Methodology, RSM) 101
6-4-6 迴歸分析(Regression analysis) 110
6-4-7 最適化結果討論 115
6-5能耗計算結果 118
第七章、 結論 120
符號說明 123
附錄A、流速之估算方法 128
附錄B、名詞簡介 132
參考文獻 137
參考文獻 [1] R.K. Pachauri, L.A. Meyer, Climate Change 2014: Synthesis Report, IPCC, 2014.
[2] C. Le Quere, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P.P. Tans, O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, Global Carbon Budget 2017, Earth System Science Data Discussions, 2018.
[3] 經部能源局, 能源平衡表, 2016. https://www.moeaboe.gov.tw/ecw/populace/web_book/ WebReports.aspx?book=B_CH&menu_id=145
[4] 李堅明, 我看華沙氣候會議, 能源報導月刊, pp. 37-40, 2014.
[5] T. Schmitz-Rode, G. Alzen, R. W. Giinther, H. Pott, CO2 Spray Mini-Injector for Digital Subtraction Angiography versus PC-Controlled Injection System: Experiments in Dogs, CardioVascular and Interventional Radiology, vol. 16, pp. 297-302, 1993.
[6] I. Corazza, N. Taglieri, E. Pirazzini, P. L. Rossi, A. Lombi, F. Scalise, J. G. Caridi, R. Zannoli, Carbon Dioxide Coronary Angiography: A Mechanical Feasibility Study with a Cardiovascular Simulator, AIP Advances, New York, 2018.
[7] A. A. Olajire, Valorization of Greenhouse Carbon Dioxide Emissions into Value-Added Products by Catalytic Processes, Journal of CO2 Utilization, vol. 3, pp. 74-92, 2013.
[8] 楊閎舜,周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 63卷1期, pp. 83-97, 2016.
[9] M. A. Nemitallah , M. A. Habib , H.M. Badr, S. A. Said, A. Jamal, R. B.Mansour, E. M. A. Mokheimer, K. Mezghani1, Oxy-Fuel Combustion Technology: Current Status, Applications, and Trends, International Journal of Energy Research, vol. 41, pp. 1670-1708, 2017.
[10] S. Cavenati, C. A. Grande, A. E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures, Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.
[11] D. Ko, R. Siriwardane, L. T. Biegler, Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration, Industrial & Engineering Chemistry Research, vol. 42, pp. 339-348, 2003.
[12] K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho, Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery, Industrial & Engineering Chemistry Research, vol. 34, pp. 591-598, 1995.
[13] M. T. Ho, G. W. Allinson, D. E. Wiley, Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption, Industrial & Engineering Chemistry Research, vol. 47, pp. 4883-4890, 2008.
[14] R. Haghpanah, A. Majumder, R. Nilam, A. Rajendran, S. Farooq, I. A. Karimi, M. Amanullah, Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion CO2 Capture via Finite Volume Simulation, Industrial & Engineering Chemistry Research, vol. 52, pp. 4249-4265, 2013.
[15] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 Capture from Dry Flue Gas by Vacuum Swing Adsorption: A Pilot Plant Study, AIChE Journal, vol. 60, pp. 1830-1842, 2014.
[16] Z. Liu, C. A. Grande, P. Li, J. Yu, A. E. Rodrigues, Multi-bed Vacuum Pressure Swing Adsorption for Carbon Dioxide Capture From Flue Gas, Separation and Purification Technology, vol. 81, no. 3, pp. 307-317, 2011.
[17] Q. Wang, J. Luo, Z. Zhong, Ar. Borgna, CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends, Energy & Environmental Science, vol. 4, p. 42, 2011.
[18] G. D. Oreggioni, S. Brandani, M. Luberti, Y. Baykan, D. Friedrich, H. Ahn, CO2 Capture from Syngas by an Adsorption Process at a Biomass Gasification CHP Plant: Its Comparison with Amine-Based CO2 Capture, International Journal of Greenhouse Gas Control, vol. 35, pp. 71-81, 2015.
[19] K. P. Resnik, Aqua Ammonia Process for Simultaneous Removal of CO2, SO2 and NOx, Int. J. Environmental Technology and Management, vol. 4, pp. 89-104, 2004.
[20] X. Pan, D. Clodic, J. Toubassy, CO2 Capture by Anti-Sublimation Process and Its Technical Economic Analysis, Greenhouse Gases: Science and Technology, vol. 3, pp. 8-20, 2013.
[21] D.M. Todd, Gas Turbine Improvements Enhance IGCC Viability, Gasification Technologies Conference, San Francisco, 2000.
[22] Tampa Electric Company, Proposed EPA Issuance of a National Pollutant Discharge Elimination System (NPDES) Permit for a New Source, Proposed DOE Clean Coal Cost-shared Financial Assistance Under the DOE Clean Coal Technology Demonstration Program: Environmental Impact Statement, vol. 1, pp. 233-236, 1994.
[23] D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
[24] Y. A. Cengel, M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed., McGraw-Hill, New York, 2004.
[25] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Carnegie Mellon University Press, Pittsburgh, 2010.
[26] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[27] S. U. Rege, R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[28] C. W. Skarstrom, Esso Research and Engineering Company. US Patent 2944627, 1960.
[29] A. E. Rodrigues, M. D. LeVan, D. Tondeur, Adsorption: Science and Technology, Kluwer, Alphen aan den Rijn, 1988.
[30] W. Choi, T. Kwon, Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[31] D. Daniel, M. P. G. De, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[32] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter, A. D. Ebner, Puri?cation of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Puri?cation Technology, vol. 193, pp. 91-102, 2018.
[33] B. K. Na, H. L. Lee, K. K. Koo, H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[34] K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[35] J. J. Collins, Air Separation by Adsorption. US Patent 4026680, 1975.
[36] S. J. Doong, R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[37] L. Jiang, V.G. Fox, L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[38] A. Fuderer, E. Rudelstorfer, Selective Adsorption Process". US Patent 3986849, 1976.
[39] P. H. Turnock, R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[40] R.T. Yang, S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[41] S. Farooq, D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[42] E. Glueckauf, J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[43] R. Singh, M. K. R. Reddy, S. Wilson, K. Joshi , J. C. D. D. Costa, P. Webley, High Temperature Materials for CO2 Capture, Energy Procedia, vol. 1, pp. 623-630, 2009.
[44] Q. Huang, M. Ei?, Commercial Adsorbents as Benchmark Materials for Separation of Carbon Dioxide and Nitrogen by Vacuum Swing Adsorption Process, Separation and Purification Technology, vol. 103, pp. 203-215, 2013.
[45] R. Haghpanah, A. Rajendran, S. Farooq, I. A. Karimi, Optimization of One- and Two-Stage Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve, Industrial & Engineering Chemistry Research, vol. 53, pp. 9186-9198, 2014.
[46] V. G. Gomes, K. W. K. Yee, Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases, Separation and Purification Technology, vol. 28, pp. 161-171, 2002.
[47] J. Zhang, P. A. Webley, P. Xiao, Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture from Flue Gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[48] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues, R. F. P. M. Moreira, Carbon Dioxide-Nitrogen Separation Through Pressure Swing Adsorption, Chemical Engineering Journal, vol. 172, pp. 698-704, 2011.
[49] S. V. Sivakumar, D. P. Rao, Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2?N2?13X Zeolite System, Industrial & Engineering Chemistry Research, vol. 50, pp. 3426-3436, 2011.
[50] P. A. S. Moura, D. P. Bezerra, E. Vilarrasa-Garcia, M. Bastos-Neto, D. C. S. Azevedo, Adsorption Equilibria of CO2 and CH4 in Cation-Exchanged Zeolites 13X, Adsorption-Journal of the International Adsorption Society, vol. 22, pp. 71-80, 2016.
[51] J. H. Park, H. T. Beum, J. N. Kim, S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[52] L. Wang, Z. Liu, P. Li, J. Yu, A. E. Rodrigues, Experimental and Modeling Investigation on Post-Combustion Carbon Dioxide, Chemical Engineering Journal, vol. 197, pp. 151-161, 2012.
[53] A. Golmakani, S. Fatemi, J. Tamnanloo, CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[54] L. Riboldi and O. Bolland, Evaluating Pressure Swing Adsorption as a CO2 Separation Technique in Coal-Fired Power Plants, International Journal of Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.
[55] M. Zaman, J. H. Lee, Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies, Korean Journal of Chemical Engineering, vol. 30, pp. 1497-1526, 2013.
[56] N. Susarla, R. Haghpanah, I. A. Karimi, S. Farooq, A. Rajendran, L. S. C. Tan and J. S. T. Lim, Energy and Cost Estimates for Capturing CO2 from a Dry Flue Gas Using Pressure/Vacuum Swing Adsorption, Chemical Engineering Research and Design, vol. 102, pp. 354-367, 2015.
[57] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han, J. N. Kim, A 2-stage PSA Process for The Recovery of CO2 from Flue Gas and Its Power Consumption, Studies in Surface Science and Catalysis, no. 153, pp. 405-410, 2004.
[58] F. Samimi, Z. Khadem Modarresi, O. Dehghani, M.R. Rahimpour, A. Bolhasani, Application of Response Surface Methodology of an Industrial Methylacetylene and Propadiene Hydrogenation Reactor, Journal of the Taiwan Institute of Chemical Engineers, vol. 46, pp. 51-64, 2015.
[59] 陳威宇, 以變壓吸附法純化氣化合成氣經富氧燃燒後高純度二氧化碳之模擬研究, 國立中央大學,碩士論文, 民國106年.
[60] D. Duong, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
[61] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[62] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[63] E. N. Fuller, P. D. Schettler, J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Gas Chromatography, vol. 3, pp. 222-227, 1965.
[64] E. N. Fuller, K. Ensley, J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[65] D. F. Fairbanks, C.R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[66] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[67] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[68] S. Farooq, D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[69] N. Wakao, S. Kaguei, T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[70] G. Carta, A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[71] J. Karger, D. M. Ruthven, J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[72] M. D. LeVan, G. Carta, C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[73] K. Kawazoe, M. Suzuki, K. Chihara, Chromatographic Study of Diffusion in Molecular-Sieving Carbon., Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[74] H. Qinglin, S. M. Sundaram, S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[75] X. Hu, E. Mangano, D. Friedrich, H. Ahn, S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[76] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[77] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學,碩士論文, 民國104年.
[78] J. M. Smith, H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, Singapore, 1987.
[79] 吳碧卿, 製備矽膠固著聚苯胺吸附劑及吸脫附試驗與氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗, 國立中央大學,碩士論文, 民國106年.
[80] J. J. Carroll, Acid Gas Injection and Carbon Dioxide Sequestration, John Wiley & Sons, Hoboken, 2010.
[81] 徐彩峰, 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗, 國立中央大學,碩士論文, 民國107年.
[82] National Energy Technology Laboratory, Case B11A Performance Results, Cost and Performance Baseline for Fossil Energy Plants, vol. 1a, pp. 1-240, 2015.
[83] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[84] R. A. Fisher, Statistical Methods for Research Worker, Oliver and Boyd, Edinburgh, 1925.
[85] R. G. Lomax, D L. Hahs-Vaughn, Statistical Concepts: A Second Course, 4th ed., Routledge, New York, 2012.
[86] 田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 國立中央大學,碩士論文, 2013.
[87] G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[88] R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[89] 葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 2005.
[90] Z. Helwani, A. D. Wiheeb, J. Kim, M. R. Othman, In-Situ Mineralization of Carbon Dioxide in a Coal-Fired Power Plant, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 38, no. 4, pp. 606-611, 2016.
[91] A. Bandyopadhyay, Amine Versus Ammonia Absorption of CO2 as a Measure of Reducing GHG Emission: A Critical Analysis, Clean Technologies and Environmental Policy, vol. 13, pp. 269-294, 2011.
[92] J. J. Liang, P. M. Bentlerc, A T-Distribution Plot to Detect Non-Multinormality, Computational Statistics & Data Analysis, vol. 30, no. 1, pp. 31-44, 1999.
[93] S. K. Ahn, F-Probability Plot and Its Application to Multivariate Normality, Communications in Statistics - Theory and Methods, vol. 21, pp. 997-1023, 1992.
[94] R. Z. Li, K. T. Fang, L. X. Zhu, Some Q-Q Probability Plots to Test Spherical and Elliptical Symmetry, Journal of Computational and Graphical Statistics, vol. 6, no. 4, pp. 435-450, 1997.
[95] D. Y. C. Leunga, G. Caramannab and M. M. Maroto-Valerb, An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies, Renewable Sustainable Energy Reviews, vol. 39, pp. 426-443, 2014.
指導教授 周正堂 楊閎舜(Cheng-Tung Chou Hong-Sung Yang) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明