博碩士論文 105324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.95.131.146
姓名 吳天麟(Tien-Lin Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究
(Simulation study of oxygen production from air by pressure swing adsorption process in conformational design with heat-exchange effect)
相關論文
★ 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究★ 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析
★ 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗★ 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析
★ 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析★ 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 變壓吸附法為一分離氣體混合物之連續性循環操作程序,利用氣體混合物中各成分對吸附劑之吸附能力的不同而產生的吸附選擇性達成氣體分離的效果,並利用高壓吸附、低壓脫附以得到高濃度的產物。由於氣體高壓吸附期間會釋放熱量,將增加吸附床溫度而不利於吸附進行,另一方面,氣體低壓脫附時為吸熱過程,將降低吸附床溫度而不利於脫附進行。因此本研究設計具有熱交換的不同結構型吸附塔,目標為將進行吸附步驟的床中所放出的熱量經由管壁傳至正在進行脫附步驟需熱的床,達到更佳的吸附及脫附效果。
本研究以zeolite 5A分離空氣製造氧氣,將空氣組成簡化為21%的氧氣、1%氬氣與78%的氮氣後,以extended Langmuir isotherm model描述其等溫平衡吸附曲線,再以線性趨動力質傳阻力模型描述其氣固間吸附質傳阻力。結果顯示具有熱交換的半圓柱型吸附塔和雙套管型吸附塔比起沒有熱交換的傳統獨立雙圓柱型吸附塔增加了熱補償效益,此效益有助於提升Skarstrom cycle分離空氣製造氧氣的氧氣濃度。
接著增加具有熱交換的吸附塔之塔數,結果顯示具有熱交換的吸附塔其塔數增加後,氧氣的純度會上升,且分割圓柱型吸附塔對於氮氧分離的效果較套管型吸附塔好。最後選擇六分之一圓柱型吸附塔作變因探討尋求計算數據中最佳的操作條件。最佳的操作條件為進料壓力為4.35 atm,塔長31.5 cm,進料加壓時間為48 s,高壓產氣時間為29 s。最佳的結果為塔頂產物氧氣濃度94.27%,回收率30.45%。
摘要(英) Pressure swing adsorption (PSA) is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. This technology consists of gas adsorption at high pressure and desorption at low pressure to produce high-purity product. The heat released during gas adsorption will increase the bed temperature, which is unfavorable to adsorption. On the other hand, gas desorption is an endothermic process, which will decrease the bed temperature, so it is unfavorable to desorption. In this study, the traditional cylindrical adsorbers are replaced by heat-exchange divided cylindrical and concentric-tube adsorbers. To achieve better adsorption and desorption effects, the adsorption heat released from one bed during adsorption process can be transferred through the wall to the neighboring desorption bed which needs heat to desorb the adsorbing gases.
This study utilizes zeolite 5A to separate oxygen from air, and the air composition is simplified to 21% oxygen, 1% argon, and 78% nitrogen. The extended Langmuir isotherm model is used to describe adsorption isotherms of gas components. Linear driving force model is used to describe the mass transfer resistance between gas and solid phase. The results show that heat-exchange semicylindrical and concentric-tube adsorbers can have better heat compensation during adsorption and desorption, which increases the oxygen purity in Skarstrom cycle.
Furthermore, we study the effect of increasing the number of beds with heat-exchange adsorbers. The results show that when the number of beds with heat-exchange adsorbers increases, the purity of oxygen increases, and the air separation effect of divided cylindrical adsorbers is better than that of concentric-tube adsorbers. Finally, we chose one-sixth cylindrical adsorber to discuss operating variables, and explored the best operating conditions among all the simulation results. The best operating conditions are feed pressure 4.35 atm, bed length 31.5 cm, pressurization time 48 s, and production time 29 s. The simulation results of the best conditions are 94.27% purity and 30.45% recovery of oxygen at top product.
關鍵字(中) ★ 變壓吸附程序
★ 熱交換
★ 分割圓柱型吸附塔
★ 套管型吸附塔
關鍵字(英) ★ Pressure swing adsorption
★ Heat-exchange
★ Divided cylindrical adsorber
★ Concentric-tube adsorber
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章、緒論 1
第二章、簡介及文獻回顧 4
2-1 吸附之簡介 4
2-1-1 吸附基本原理 4
2-1-2 吸附劑及其選擇率 6
2-2 文獻回顧 8
2-2-1 PSA程序之發展與改進 8
2-2-2 理論之回顧 13
2-3 研究背景與目的 15
第三章、數值模擬理論 19
3-1 基本假設 20
3-2 統制方程式 21
3-3 吸附平衡關係式 32
3-4 參數推導 33
3-4-1 軸向分散係數 33
3-4-2 熱傳係數 36
3-4-3 線性驅動力質傳係數 39
3-5 邊界條件與流速 40
3-5-1 邊界條件與節點流速 40
3-5-2 閥公式 41
3-6 求解步驟 42
第四章、程式驗證 45
4-1 雙塔六步驟氫氣純化之雙套管型吸附塔模擬驗證 45
4-1-1 雙塔六步驟氫氣純化之製程描述 45
4-1-2 雙塔六步驟氫氣純化之模擬結果 48
第五章、雙塔富氧製程基本程序 50
5-1 Skarstrom cycle 51
5-2 參數與操作條件 53
5-3 能耗計算 55
第六章、結果討論與數據分析 56
6-1 圓柱型、半圓柱型和雙套管型吸附塔Skarstrom cycle程序模擬比較 57
6-2 不同結構型吸附塔之塔數對Skarstrom cycle程序模擬之影響 62
6-2-1 半圓柱型、四分之一圓柱型、六分之一圓柱型和八分之一圓柱型吸附塔Skarstrom cycle程序模擬比較 62
6-2-2 雙套管型、四套管型、六套管型和八套管型吸附塔Skarstrom cycle程序模擬比較 63
6-3 四分之一圓柱型和四套管型吸附塔Skarstrom cycle程序模擬比較 69
6-4 六分之一圓柱型和六套管型吸附塔Skarstrom cycle程序模擬比較 72
6-5 八分之一圓柱型和八套管型吸附塔Skarstrom cycle程序模擬比較 75
6-6 進料壓力對Skarstrom cycle製程之影響 79
6-7 塔長對Skarstrom cycle製程之影響 84
6-8 進料加壓時間對Skarstrom cycle製程之影響 89
6-9 高壓產氣時間對Skarstrom cycle製程之影響 95
第七章、結論 101
符號說明 103
參考文獻 108
附錄A、流速之估算方法 112
附錄B、Adams methods 116
參考文獻 [1] J. C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D. E. Wiley, H. Li, M. T. Ho, E. Mangano, and S. Brandani, Emerging CO2 capture systems, Int. J. of Greenhouse Gas Control, vol. 40, pp. 126-166, 2015.
[2] A. Aleghafouri and M. Davoudi, Modeling and simulation of a pressure-temperature swing adsorption process for dehydration of natural gas, Adsorption, vol. 24, pp. 121-133, 2018.
[3] S. Farooq, D. M. Ruthven, and H. A. Boniface, Numerical simulation of a pressure swing adsorption oxygen unit, Chem. Eng. Sci, vol. 44, pp. 2809-2816, 1989.
[4] D. K. Moon, Y. H. Kim, H. Ahn, and C. H. Lee, Pressure swing adsorption process for recovering H2 from the effluent gas of a melting incinerator, Ind. Eng. Chem. Res., vol. 53(40), pp. 15447-15455, 2014.
[5] M. Simo, C. J. Brown, and V. Hlavacek, Simulation of pressure swing adsorption in fuel ethanol production process, Comput. Chem. Eng., vol. 32, pp. 1635-1649, 2008.
[6] A. Golmakani, S. Fatemi, and J. Tammanloo, CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34, Ind. Eng. Chem. Res., vol. 55(1), pp. 334-350, 2016.
[7] S. Kim, D. Ko, and I. Moon, Dynamic optimization of a dual pressure swing adsorption process for natural gas purification and carbon capture, Ind. Eng. Chem. Res., vol. 55(48), pp. 12444–12451, 2016.
[8] E. S. Kikkinides and R. T. Yang, Simultaneous SO2/NOx removal and SO2 recovery from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res., vol. 30(8), pp. 1981-1989, 1991.
[9] W. B. Dolan, A. S. Zarchy, K. M. Patel, T. M. Cowan and M. M. Davis, Nitrous oxide purification by pressure swing adsoprtion, United States Patent 6,080,226, 2000.
[10] M. D. Urich, R. R. Vemula, and M. V. Kothare, Multivariable model predictive control of a novel rapid pressure swing adsorption system, AIChE J., vol. 64, pp. 1234-1245, 2018.
[11] R. T. Yang, Gas seperation by adsorption process, London: Imperial College Press, 1997.
[12] S. U. Rege and R. T. Yang, A simple parameter for seleciton an adsorbent for gas separation by pressure swing adsorption, Sep. Sci. Technol., vol. 36(15), pp. 3355-3365, 2001.
[13] C. W. Skarstrom, Esso research and engineering company, United States Patent 2,944,627, 1960.
[14] A. E. Rodrigues, M. D. LeVan, and D. Tondeur, Adsorption: science and technology, Berlin: Springer Netherlands, 1988.
[15] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song, and B. K. Na, Optimal operation of the pressure swing adsorption (PSA) process, Korean J. Chem. Eng., vol. 20, pp. 617-623, 2003.
[16] G. P. de Montgreuil and D. Domine, Process for separating a binary gaseous mixture by adsorption, United States Patent 3,155,468, 1964.
[17] B. K. Na, H. L. Lee, K. K. Koo, and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Ind. Eng. Chem. Res., vol. 41(22), pp. 5498-5503, 2002.
[18] K. Chihara and M. Suzuki, Air drying by pressure swing adsorption, J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[19] J. J. Collins, Air separation by adsorption, United States Patent 4,026,680, 1975.
[20] S. J. Doong and R. T. Yang, Hydrogen purification by the multibed pressure swing adsorption process, React. Polym., vol. 6, pp. 7-13, 1987.
[21] L. Jiang, V. G. Fox, and L. T. Biegler, Simulation and optimal design of multiple-bed pressure swing adsorption systems, AIChE J., vol. 50, pp. 2904-2914, 2004.
[22] A. Fuderer and E. Rudelstorfer, Selective adsorption process, United States Patent 3,986,849, 1976.
[23] P. H. Turnock and R. H. Kadlec, Separation of nitrogen and methane via periodic adsorption, AIChE J., vol. 17(2), pp. 335-342, 1971.
[24] R. T. Yang and S. J. Doong, Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation, AIChE J., vol. 31, pp. 1829-1842, 1985.
[25] S. Farooq and D. M. Ruthven, A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process, Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[26] E. Glueckauf and J. I. Coates, Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, J. Chem. Soc., vol. 0, pp. 1315-1321, 1947.
[27] L. Zhou, J. Li, Y. P. Zhou, W. Su, and Y. Sun, Experimental studies of a new compact design four-bed psa equipment for producing oxygen, AlChE J., vol. 51, pp. 2695-2701, 2005.
[28] L. Zhou, X. F. Ouyang, W. Li, S. N. Li, and Y. P. Zhou, Experiments of improving the performance of disk type psa columns in oxygen production, Sep. Sci. Technol., vol. 41, pp. 247-259, 2006.
[29] J. J. Lee, M. K. Kim, D. G. Lee, H. Ahn, M. J. Kim, and C. H. Lee, Heat-exchange pressure swing adsorption process for hydrogen separation, AlChE J., vol. 54, pp. 2054-2064, 2008.
[30] M. Pan, H. M. Omar, and S. Rohani, Application of nanosize zeolite molecular sieves for medical oxygen concentration, J. Nanomater., vol. 7(8), 2017.
[31] X. Zhu, Y. Liu, X. Yang, and W. Liu, Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen, Adsorption, vol. 23(1), pp. 175-184, 2017.
[32] C. T. Chou and W. C. Huang, Incorporation of a valve equation into the simulation of a pressure swing adsorption process, Chem. Eng. Sci., vol. 49, pp. 75-84, 1994.
[33] W. J. Huang, C. Y. Chen, and C. T. Chou, Concentration and recovery of SO2 from flue gas by pressure swing adsorption, J. Chin. Inst. Chem. Eng,, vol. 37, pp. 149-157, 2006.
[34] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, New York: Marcel Dekker, Inc., 1975.
[35] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, 2nd ed., New York: John Wiley & Sons, Inc., 2007.
[36] E. N. Fuller, P. D. Schettler, and J. C. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Chromatogr. Sci. Ser., vol. 3, pp. 222-227, 1965.
[37] E. N. Fuller, K. Ensley, and J. C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, J. Phys. Chem., vol. 73(11), pp. 3679-3685, 1969.
[38] D. F. Fairbanks and C. R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Ind. Eng. Chem., vol. 42(3), pp. 471-475, 1950.
[39] W. L. McCabe, J. C. Smith, and P. Harriott, Unit operations of chemical engineering, 7th ed., New York: McGraw-Hill, 2005.
[40] W. H. McAdams, Heat transmission, 3rd ed., New York: McGraw-Hill, 1954.
[41] P. V. Danckwerts, Continuous flow systems: Distribution of residence, Chem. Eng. Sci., vol. 2(1), pp. 1-13, 1953.
[42] C. T. Chou and C. Y. Chen, Carbon dioxide recovery by vacuum swing adsorption, Sep. Purif. Technol., vol. 39, pp. 51-65, 2004.
[43] J. G. Jee, M. B. Kim, and C. H. Lee, Adsorption characteristics of hydrogen mixtures in a layered bed: binary, ternary, and five-component mixtures, Ind. Eng. Chem. Res., vol. 40(3), pp. 868-878, 2001.
[44] D. Ferreira, P. Barcia, R. D. Whitley, and A. Mendes, Single-stage vacuum pressure swing adsorption for producing high-purity oxygen from air, Ind. Eng. Chem. Res., vol. 54(39), pp. 9591-9604, 2015.
[45] H. Verelat and G. V. Baron, Adsorption of oxygen, nitrogen, and argon on 5A molecular sieve, J. Chem. Eng. Data, vol. 30(1), pp. 66-70, 1985.
[46] J. M. Smith and H. C. Ness, Introduction to chemical engineering thermodynamics, 4th ed., New York: McGraw-Hill, 1987.
[47] D. W. Breck, Zeolite molecular sieves, New York: John Wiley & Sons, Inc., 1974.
[48] H. Boniface, Separation of argon from air using zeolites, Frederiction: University of New Brunswick, 1983.
[49] Y. A. Cengel and M. A. Boles, Thermodynamics: an engineering approach, 5th ed., New York: McGraw-Hill, 2004.
指導教授 周正堂 楊閎舜(Cheng-Tung Chou Hong-Sung Yang) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明