博碩士論文 105324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.19.31.73
姓名 劉德緯(De-Wei Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 開發山苦瓜啤酒製程與苦瓜胜肽對糖尿病降血糖之探討
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-12以後開放)
摘要(中) 糖尿病一直是人類的文明病,糖尿病患者的人口也逐年上升。糖尿病已被證實與飲食習慣有關,超過九成以上的糖尿病患者為第二型糖尿病(非胰島素依賴型),糖尿病目前無法被治癒,藥物只能控制病情。透過飲食控制、運動、服藥,是目前主流治療及預防糖尿病的方式。
許多文獻證實山苦瓜具有降血糖的功能,但是由於山苦瓜明顯的苦味和青澀的口感不是大眾所能接受,同時山苦瓜保鮮期短,加上表面瘤狀突起使得山苦瓜銷售更不容易。
因此,此篇論文將山苦瓜結合啤酒發酵,並用豚胰臟的澱粉酶(α-Amylase from porcine pancreas)進行澱粉酶抑制體外實驗,作為功能性表現,探討其有效成分。
在本實驗發現來自麥子蛋白亦有澱粉酶抑制效果,但隨發酵過程會被酵母作為氮源代謝轉換,導致最終發酵為啤酒澱粉酶抑制效果下降。因此在接近發酵終點時添加苦瓜粉,避免苦瓜有效成分被消耗,成功提升啤酒澱粉酶抑制功能性表現。
此研究中進一步證實抑制α-澱粉酶功效與苦瓜胜肽濃度成正相關,胜肽總量上升同時澱粉酶抑制表現增加。苦瓜本身含有水解酵素,可以分解蛋白產生苦瓜胜肽,提高澱粉酶抑制率,進一步添加在發酵液中的發現有更好功能性表現,且提升胜肽濃度。因此苦瓜確實能夠添加在啤酒製程,得到更好效果,改善原本麥汁因為生物代謝導致抑制澱粉酶功效下降之問題。
以具減肥、預防糖尿病的概念,開發的山苦瓜啤酒,在體外抑制澱粉酶實驗的效果有顯著提升,同時改善山苦瓜青澀的味道,除了風味上提升,還能延長保存期限,保有其有效成分。
摘要(英) Diabetes has always been a civilized disease of human beings, and the population of people with diabetes has also increased year by year.
Diabetes has been confirmed to be related to eating habits. More than 90% of diabetics are typeⅡ diabetes (non-insulin-dependent). Diabetes cannot be cured at present, and drugs can only control the condition. Through diet control, exercise, and medication, it is currently the mainstream therapy to treat and prevent diabetes.
Many literatures have confirmed that Mormodica charantia (bitter gourds) has the function of hypoglycaemic, but because bitter gourds′ obvious bitterness and astringent taste are not acceptable to the public, meanwhile, the short expiration date of bitter gourds and the surface tumor-like protrusions make it more difficult to be sold. Therefore, in this thesis, bitter gourd is combined with beer fermentation process. α-Amylase inhibition in vitro experiments using α-amylase from porcine pancreas is applied to show its functional performance and study its effective ingredients.
It was found in this experiment that the protein derived from malt also has an amylase inhibitory effect, but it will be metabolized by yeast as a nitrogen source during the fermentation, resulting in a decrease in the inhibitory effect finally. Hence, when bitter gourd powder is added near the end of fermentation, the effective components of bitter gourd are prevented from being consumed, and the functional performance of α-Amylase inhibition is successfully improved.
In this study, it was further confirmed that the inhibitory effect of α-amylase was positively correlated with the concentration of bitter gourd peptide, and the total amount of peptide increased and the performance of α-amylase inhibition increased. The bitter gourd itself contains a hydrolyzing enzyme that can decompose proteins to produce bitter gourd peptides, improve the α-amylase inhibition rate, and further added to the fermentation broth to increase the peptide concentration beside that also show the functional performance of α-amylase inhibition much better. Consequently, bitter gourd can indeed be added to the beer manufacturing process to obtain better results and improve the problem of the original wort′s reduction in α-amylase inhibition due to biological metabolism.
The developed Bitter Gourd Beer has significantly improved the effect of inhibiting α-amylase, and at the same time reduced the bitter taste of bitter gourds. In addition to improving the flavor, it can also extend the shelf life and retain its effective ingredients. In order to delay the absorption of sugar and lose weight.
關鍵字(中) ★ 糖尿病
★ 降血糖
★ 苦瓜胜肽
★ 啤酒
★ 山苦瓜
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 IV
總目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1糖尿病 3
2.1.1糖尿病的發現 3
2.1.2胰島素的發現 4
2.2胰島素運作機制 5
2.2.1 Beta-cell分泌胰島素 5
2.2.2 胰島素的作用機制 6
2.3糖尿病病理機制和治療方式 6
2.3.1糖尿病所引發之併發症 7
2.3.2糖尿病成因和類別 8
2.3.3第二型糖尿病治療方式 9
2.3.4酒精飲料與糖尿病 11
2.4山苦瓜 12
2.4.1植物固醇(Phytosterols) 12
2.4.2蠶豆嘧啶葡糖苷(vicine) 17
2.4.3多酚(polyphenol)與類黃酮(Flavonoids) 17
2.4.4苦瓜胜肽(poly-peptide,peptide) 20
2.5山苦瓜發酵提升有效成分 22
2.6啤酒與釀酒酵母 24
2.6.1應用在啤酒工業的釀酒酵母 25
2.6.2釀酒酵母生長與代謝 27
2.7啤酒 33
2.7.1啤酒的起源與文化 33
2.7.2啤酒釀製方式 34
2.7.3啤酒製作的釀造水 36
2.7.4麥子(wheat) 36
2.7.5澱粉酶的作用和機制 39
2.7.5啤酒花 40
2.7.6啤酒種類 44
第三章 實驗方法 47
3.1實驗規劃 47
3.1.2實驗流程說明 48
3.2實驗材料與設備 49
3.2.1實驗菌株 49
3.2.2實驗藥品 50
3.2.3實驗儀器與設備 51
3.2.4符號表示 52
3.2.5實驗製作與裝置 53
3.3實驗方法 55
3.3.1市售啤酒酵母勾選 55
3.3.2菌種保存 55
3.3.3培養基組成與培養方式 55
3.3.4啤酒釀製與麥汁製作 58
3.3.5乙醇濃度分析 59
3.3.6還原糖分析 61
3.3.7折射糖度計 63
3.3.8菌重分析-乾重法 64
3.3.10苦瓜素分析 66
3.3.11磷酸鹽緩衝液 68
3.3.12澱粉酶抑制 68
3.3.13蛋白質BCA測定 70
3.3.14胜肽OPA測定 71
第四章 實驗數據 72
4.1 不同釀酒酵母分析比較 72
4.1.1 控制組培養基對釀酒酵母動力曲線 72
4.1.2 麥汁組培養基對釀酒酵母動力曲線 76
4.2 不同釀酒酵母抑制澱粉酶功能性表現 81
4.2.1 控制組培養基對釀酒酵母抑制澱粉酶功能性表現 81
4.2.2 麥汁組培養基對釀酒酵母抑制澱粉酶功能性表現 84
4.2.3 麥汁蛋白抑制澱粉酶功能性表現 88
4.3 苦瓜成分分析 89
4.3.1 苦瓜含水量分析 89
4.3.2 苦瓜素 89
4.3.3 滅菌對於山苦瓜汁影響 91
4.3.4 苦瓜汁對於時間變化 92
4.3.5 苦瓜胜肽溫度、時間與澱粉酶抑制變化 93
4.3.6 不同濃度苦瓜粉與澱粉酶抑制 99
4.3.7 移除/未移除酵母對於苦瓜胜肽與澱粉酶抑制影響 100
4.4 添加苦瓜粉發酵 101
4.4.1 苦瓜粉添加時機 101
4.4.2 添加珍珠(M)山苦瓜粉發酵 102
4.4.3 添加花蓮六號(M-6)山苦瓜粉發酵 104
4.5 添加苦瓜粉發酵胜肽變化 106
第五章 結果與討論 110
5.1 結論 110
5.2 建議 111
第六章 參考文獻 112
參考文獻 [1] 賴韻如, ”探討酵母菌與乳酸菌轉換苦瓜皂苷之影響,” 臺灣大學食品科技研究所學位論文, pp. 1-138, 2018.
[2] WHO, ”Diabetes,” 10/30 2018. WHO
[3] V. F. Market, ”Global Opportunity Analysis and Industry Forecast, 2017-2023,” Allied Market Research: Pune, Maharashtra, India: August, 2016.
[4] 衛生福利部國民健康署, ”三高防治專區,” 2018.
[5] C. D. Mathers and D. Loncar, ”Projections of global mortality and burden of disease from 2002 to 2030,” PLoS medicine, vol. 3, no. 11, p. e442, 2006.
[6] 陳昌平, ”糖尿病,” p. 16, 1977.
[7] 陳昌平, ”糖尿病,” p. 91, 1977.
[8] E. N. Baker et al., ”The structure of 2Zn pig insulin crystals at 1.5 Å resolution,” Phil. Trans. R. Soc. Lond. B, vol. 319, no. 1195, pp. 369-456, 1988.
[9] V. Kangralkar, S. D. Patil, and R. Bandivadekar, ”Oxidative stress and diabetes: a review,” Int J Pharm Appl, vol. 1, no. 1, pp. 38-45, 2010.
[10] G. Santulli et al., ”Calcium release channel RyR2 regulates insulin release and glucose homeostasis,” The Journal of clinical investigation, vol. 125, no. 5, pp. 1968-1978, 2015.
[11] A. De Vos et al., ”Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression,” The Journal of clinical investigation, vol. 96, no. 5, pp. 2489-2495, 1995.
[12] J. Keizer and G. Magnus, ”ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study,” Biophysical Journal, vol. 56, no. 2, p. 229, 1989.
[13] V. Lang and P. E. Light, ”The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes,” Pharmacogenomics and personalized medicine, vol. 3, p. 145, 2010.
[14] Wikipedia, ”insulin,” (in english), 2018.
[15] i. d. federation, ”What is diabetes,” (in english), 2018.
[16] B. M. Leon and T. M. Maddox, ”Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research,” World journal of diabetes, vol. 6, no. 13, p. 1246, 2015.
[17] T. Dall, S. E. Mann, Y. Zhang, J. Martin, and Y. Chen, ”Economic costs of diabetes in the US in 2007,” Diabetes care, vol. 31, no. 3, p. 596, 2008.
[18] L. R. Bahia et al., ”The costs of type 2 diabetes mellitus outpatient care in the Brazilian public health system,” Value in health, vol. 14, no. 5, pp. S137-S140, 2011.
[19] 陳建銘 and 陳建良, ”糖尿病腎病變,” 腎臟與透析, vol. 17, no. 2, pp. 117-122, 2005.
[20] B. Haraldsson and J. Nyström, ”The glomerular endothelium: new insights on function and structure,” Current opinion in nephrology and hypertension, vol. 21, no. 3, pp. 258-263, 2012.
[21] L. Gnudi, R. J. Coward, and D. A. Long, ”Diabetic nephropathy: perspective on novel molecular mechanisms,” Trends in Endocrinology & Metabolism, vol. 27, no. 11, pp. 820-830, 2016.
[22] A. Piwkowska, ”Role of protein kinase G and reactive oxygen species in the regulation of podocyte function in health and disease,” Journal of cellular physiology, vol. 232, no. 4, pp. 691-697, 2017.
[23] J. Jakobsen, ”Axonal dwindling in early experimental diabetes. I. A study of cross sectioned nerves,” Diabetologia, vol. 12, no. 6, pp. 539-546, 1976.
[24] R. Simpson and G. A. Morris, ”The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: A review,” Bioactive Carbohydrates and Dietary Fibre, vol. 3, no. 2, pp. 106-114, 2014.
[25] M. E. Levin, ”Management of the Diabetic Foot: Preventing Amputation.(Featured CME Topic: Diabetes Mellitus),” Southern Medical Journal, vol. 95, no. 1, pp. 10-21, 2002.
[26] M. Clinic, ”Diabetic retinopathy,” 2018.
[27] NIDDK, ”Gestational Diabetes,” (in english), 2016.
[28] D. B. Corry and M. L. Tuck, ”Protection from vascular risk in diabetic hypertension,” Current hypertension reports, vol. 2, no. 2, pp. 154-159, 2000.
[29] V. S. Malik, B. M. Popkin, G. A. Bray, J.-P. Després, W. C. Willett, and F. B. Hu, ”Sugar sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis,” Diabetes care, 2010.
[30] S. Kahn, ”The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes,” Diabetologia, vol. 46, no. 1, pp. 3-19, 2003.
[31] A. E. Martin and P. A. Montgomery, ”Acarbose: an alpha-glucosidase inhibitor,” American Journal of Health-System Pharmacy, vol. 53, no. 19, pp. 2277-2290, 1996.
[32] 林建良, 許惠恒, and 沈宜靜, ”二甲雙胍類降血糖藥物 [Metformin]: 過去, 現在與未來,” 內科學誌, vol. 24, no. 6, pp. 477-486, 2013.
[33] 財. 糖尿病人保健中心, ”糖尿病友飲酒原則,” 2019.
[34] M. Joosten, J. Beulens, S. Kersten, and H. Hendriks, ”Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial,” Diabetologia, vol. 51, no. 8, pp. 1375-1381, 2008.
[35] U. A. Ajani, C. H. Hennekens, A. Spelsberg, and J. E. Manson, ”Alcohol consumption and risk of type 2 diabetes mellitus among US male physicians,” Archives of Internal Medicine, vol. 160, no. 7, pp. 1025-1030, 2000.
[36] L. Braun and M. Cohen, Herbs and Natural Supplements, Volume 2: An Evidence-Based Guide. Elsevier Health Sciences, 2015.
[37] W.-H. Liu, B. Ding, X.-M. Ruan, H.-T. Xu, J. Yang, and S.-M. Liu, ”Analysis of free and conjugated phytosterols in tobacco by an improved method using gas chromatography–flame ionization detection,” Journal of Chromatography A, vol. 1163, no. 1-2, pp. 304-311, 2007.
[38] R. A. Moreau, B. D. Whitaker, and K. B. Hicks, ”Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses,” Progress in lipid research, vol. 41, no. 6, pp. 457-500, 2002.
[39] Y.-Z. Chen et al., ”Determination of cholesterol and four phytosterols in foods without derivatization by gas chromatography-tandem mass spectrometry,” journal of food and drug analysis, vol. 23, no. 4, pp. 636-644, 2015.
[40] K. Zaman, ”Medicinal plants with hypoglycemic activity,” Journal of Ethnopharmacology, vol. 26, no. 1, pp. 1-55, 1989.
[41] M. Lolitkar and M. R. Rao, ”Note on a hypoglycaemic principle isolated from the fruits of Momordica charantia,” Journal of the University of Bombay, vol. 29, pp. 223-224, 1962.
[42] S. M. El-Said and A. S. Al-Barak, ”Extraction of insulin like compounds from bitter melon plants,” Am. J. Drug Discovery Dev, vol. 1, pp. 1-7, 2011.
[43] J. Ahamad, S. R. Mir, and S. Amin, ANTIHYPERGLYCEMIC ACTIVITY OF CHARANTIN ISOLATED FROM FRUITS OF MOMORDICA CHARANTIA LINN. 2019, pp. 61-64.
[44] M. O. Fatope, Y. Takeda, H. Yamashita, H. Okabe, and T. Yamauchi, ”New cucurbitane triterpenoids from Momordica charantia,” Journal of Natural Products, vol. 53, no. 6, pp. 1491-1497, 1990.
[45] A. Donya, N. Hettiarachchy, R. Liyanage, J. Lay, P. Chen, and M. Jalaluddin, ”Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable,” Journal of agricultural and food chemistry, vol. 55, no. 14, pp. 5827-5833, 2007.
[46] K. B. Pandey and S. I. Rizvi, ”Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative medicine and cellular longevity, vol. 2, no. 5, pp. 270-278, 2009.
[47] M. D Archivio, C. Filesi, R. Di Benedetto, R. Gargiulo, C. Giovannini, and R. Masella, ”Polyphenols, dietary sources and bioavailability,” Annali-Istituto Superiore di Sanita, vol. 43, no. 4, p. 348, 2007.
[48] S. Shin, A. K. Ghimeray, and C. H. Park, ”Investigation Of Total Phenolic, Total Flavonoid, Antioxidantand Allyl Isothiocyanate Content In The Different Organs Of Wasabi Japonica Grown In An Organic System,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 11, no. 3, pp. 38-45, 2014.
[49] E.-J. Bak et al., ”Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice,” Scandinavian journal of clinical and laboratory investigation, vol. 73, no. 8, pp. 607-614, 2013.
[50] P. Lestari and P. G. M. W. Mahayasih, ”Inhibition Activity of Angiotensin Converting Enzyme (ACE) and Determination of Total Phenolic and Flavonoid Compound from Bitter Melon Leaves (Momordica charantia L.),” Pharmacognosy Journal, vol. 9, no. 2, 2017.
[51] Wikipedia, ”Gallic acid,” (in English), 2019.
[52] J. Kubola and S. Siriamornpun, ”Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro,” Food chemistry, vol. 110, no. 4, pp. 881-890, 2008.
[53] K. V. Doan et al., ”Gallic acid regulates body weight and glucose homeostasis through AMPK activation,” Endocrinology, vol. 156, no. 1, pp. 157-168, 2015.
[54] G. Oboh, O. B. Ogunsuyi, M. D. Ogunbadejo, and S. A. Adefegha, ”Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose,” journal of food and drug analysis, vol. 24, no. 3, pp. 627-634, 2016.
[55] S. Poovitha and M. Parani, ”In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.),” BMC complementary and alternative medicine, vol. 16, no. 1, p. 185, 2016.
[56] H.-Y. Lo, T.-Y. Ho, C. Lin, C.-C. Li, and C.-Y. Hsiang, ”Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor,” Journal of agricultural and food chemistry, vol. 61, no. 10, pp. 2461-2468, 2013.
[57] P. Khanna, T. Nag, S. Jain, and S. Mohan, ”Extraction of insulin from a plant source,” in 3rd International Congress on plant tissue and cell cultures, 1974, pp. 21-26.
[58] S. K. Singh, ”Polypeptide-k” as phytoinsulin: How much and how far,” International Journal of Green Pharmacy (IJGP), vol. 11, no. 02, 2017.
[59] Z. Ahmad et al., ”In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd),” Molecules, vol. 17, no. 8, pp. 9631-9640, 2012.
[60] F. A. Mazlan, M. S. M. Annuar, and Y. Sharifuddin, ”Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential,” PeerJ, vol. 3, p. e1376, 2015.
[61] S. Ostergaard, L. Olsson, and J. Nielsen, ”Metabolic engineering of Saccharomyces cerevisiae,” Microbiology and molecular biology reviews, vol. 64, no. 1, pp. 34-50, 2000.
[62] C. Guthrie and G. R. Fink, Guide to yeast genetics and molecular and cell biology. Gulf Professional Publishing, 2002.
[63] R. Walsh and P. Martin, ”Growth of Saccharomyces cerevisiae and Saccharomyces uvarum in a temperature gradient incubator,” Journal of the Institute of Brewing, vol. 83, no. 3, pp. 169-172, 1977.
[64] V. Vidgren, J.-P. Multanen, L. Ruohonen, and J. Londesborough, ”The temperature dependence of maltose transport in ale and lager strains of brewer′s yeast,” FEMS yeast research, vol. 10, no. 4, pp. 402-411, 2010.
[65] S. Landaud, E. Latrille, and G. Corrieu, ”Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation,” Journal of the Institute of Brewing, vol. 107, no. 2, pp. 107-117, 2001.
[66] ALCHEMIXING, ”BEER STYLES (ALE AND LAGER),” 2019.
[67] 微生物學. 藝軒圖書出版社, 2003.
[68] D. B. Thomas, T. M. Michael, M. John, and P. Jack, ”Biology of microorganisms,” 1988.
[69] J.-C. Hsu, ”探討以 PDMS 海綿萃取發酵系統連續生產乙醇之研究,” National Central University, 2016.
[70] F. Faria-Oliveira, S. Puga, and C. Ferreira, ”Yeast: world’s finest chef,” in Food Industry: IntechOpen, 2013.
[71] R. Lagunas, ”Sugar transport in Saccharomyces cerevisiae,” FEMS Microbiology Letters, vol. 104, no. 3-4, pp. 229-242, 1993.
[72] B. Turcotte, X. B. Liang, F. Robert, and N. Soontorngun, ”Transcriptional regulation of nonfermentable carbon utilization in budding yeast,” FEMS yeast research, vol. 10, no. 1, pp. 2-13, 2009.
[73] S. Van de Velde and J. M. Thevelein, ”Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae,” Eukaryotic cell, vol. 7, no. 2, pp. 286-293, 2008.
[74] W. L. Marques, V. Raghavendran, B. U. Stambuk, and A. K. Gombert, ”Sucrose and Saccharomyces cerevisiae: a relationship most sweet,” FEMS Yeast research, vol. 16, no. 1, 2016.
[75] D. Van Oevelen, M. Spaepen, P. Timmermans, and H. Verachtert, ”Microbiological aspects of spontaneous wort fermentation in the production of lambic and gueuze,” Journal of the Institute of Brewing, vol. 83, no. 6, pp. 356-360, 1977.
[76] E. Payne, ”Two-Row vs Six-Row Barley,” (in english), 2019.
[77] E. Beck and P. Ziegler, ”Biosynthesis and degradation of starch in higher plants,” Annual review of plant biology, vol. 40, no. 1, pp. 95-117, 1989.
[78] J. Kennedy, J. Cabral, I. Sa-Correia, and C. White, ”Starch biomass: a chemical feedstock for enzyme and fermentation processes,” Starch: properties and potential, vol. 115, p. 148, 1987.
[79] H. Goesaert, L. Slade, H. Levine, and J. A. Delcour, ”Amylases and bread firming–an integrated view,” Journal of Cereal Science, vol. 50, no. 3, pp. 345-352, 2009.
[80] wikipedia, ”Beta-amylase,” 2018.
[81] J. J. Palmer, How to brew: everything you need to know to brew beer right the first time. Brewers Publications, 2006.
[82] W. J. Simpson, ”Molecular structure and antibacterial function of hop resin materials,” Thames Polytechnic, 1991.
[83] K. Sakamoto and W. N. Konings, ”Beer spoilage bacteria and hop resistance,” International journal of food microbiology, vol. 89, no. 2-3, pp. 105-124, 2003.
[84] M. Verzele and D. De Keukeleire, Chemistry and analysis of hop and beer bitter acids. Elsevier, 2013.
[85] W. Simpson, ”Cambridge Prize lecture. Studies on the sensitivity of lactic acid bacteria to hop bitter acids,” Journal of the Institute of Brewing, vol. 99, no. 5, pp. 405-411, 1993.
[86] T. P. D. CERVEJA, ”TABELA PERIÓDICA DA CERVEJA,” 2019.
[87] 生物資源保存及研究中心, ”低溫保存管中之一般菌種臨時存放及活化,” 2019.
[88] L. Chen, ”探討不同蛋白酶對米蛋白水解物抗氧化及抗高血壓活性的影響,” National Central University, 2019.
[89] T. E. Shian, A. Abdullah, K. N. Kartinee, and S. H. Z. Ariffin, ”Antioxidant and hypoglycaemic effects of local bitter gourd fruit (Momordica charantia),” International Journal of PharmTech Research, vol. 8, no. 1, pp. 46-52, 2015.
指導教授 徐敬衡 審核日期 2020-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明