博碩士論文 105324069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.226.245.48
姓名 顏志捷(Chih-Chieh Yen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析
相關論文
★ 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究★ 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究
★ 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析★ 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗
★ 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析★ 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 碳捕獲與封存(Carbon Capture and Storage,簡稱CCS),是指收集如火力發電廠產生之二氧化碳,將它們儲存並長期與大氣隔離的技術過程。其中,吸附法為IPCC認為最有潛力且能夠放大至廠區規模等級操作的捕獲技術之一。
變壓吸附法是常用來分離氣體混合物的一種商業化技術,根據吸附劑對於混合氣體選擇性高低的不同,以及高壓時利於吸附劑吸附、低壓利於脫附之特性,來達到氣體分離的目的。
本研究以捕獲燃煤電廠所排放之煙道氣中二氧化碳為目的,以15%二氧化碳與85%氮氣作為進料,並選擇EIKME 13X作為本研究所使用之吸附劑,將之填入吸附塔進行突破及脫附實驗,並以此參數作為設計基礎,以利後續雙塔變壓吸附程序之實驗設計。本次實驗利用兩水準部分因子實驗設計,並以進料壓力、溫度、逆向減壓壓力、進料加壓/同相減壓時間、高壓吸附/逆相減壓時間作為操作變因,結果顯示,對純度及回收率而言,逆向減壓壓力皆為顯著因子。
由於逆向減壓壓力已達設備極限0.05 atm,在溫度338K的情況下,調整高壓吸附/逆相減壓時間為360秒,此時進料壓力為3.45 atm、進料加壓/同相減壓時間50秒,二氧化碳純度可達83.71%、回收率可達76.10%。
後續透過複迴歸分析,將數據進行迴歸,可以得到關於純度及回收率的迴歸模型,之後便能以此迴歸模型,對於製程的改良作判斷與決策。
摘要(英) Carbon capture and storage (CCS) is the process of capturing carbon dioxide (CO2) usually from large point sources, like coal-fired power plant, and depositing it where it will not enter the atmosphere. Among all the capture methods, IPCC thinks adsorption is the most potential capturing method and can be enlarged to the factory level.
Pressure swing adsorption process (PSA) is one of commercial technologies that are usually used to separate gas mixtures.According to the various selectivities of gas mixtures toward adsorbent, and based on the properties of adsorption at high pressure and desorption at low pressure, PSA uses these characteristics to achieve the target of gas separation.
This work presents a study for capturing carbon dioxide from dry flue gas (15% CO2 / 85% N2) emitted from coal-fired power plant using EIKME 13X as adsorbent.The breakthrough and desorption curves were discussed by changing different feed flow rate and temperature,and results were used to conduct the design of experiment of dual-bed PSA process. At this two-level fractional factorial design, parameter study was implemented to obtain a series of optimized settings of operating variables by investigating the effects of pressurization/cocurrent depressurization time, adsorption/countercurrent depressurization time, feed pressure, temperature, countercurrent depressurization pressure, and results show that the main effect of countercurrent depressurization pressure is significant for both CO2 purity and recovery.
As countercurrent depressurization pressure reaches the experimental lower limit of 0.05 atm, fixing temperature at 338K, feed pressure at 3.45 atm, pressurization/cocurrent depressurization time at 50s, then increasing adsorption/countercurrent depressurization time to 360 s, the process can get the CO2 purity of 83.71% and recovery of 76.10%.
Finally, by multiple regression analysis, we can get a regression model of CO2 purity and recovery, then via this model, we can make the decision of process improvement.
關鍵字(中) ★ 煙道氣
★ 變壓吸附
★ 二氧化碳
★ 雙塔六步驟
★ 實驗設計
關鍵字(英) ★ flue gas
★ pressure swing adsorption
★ carbon dioxide
★ two-bed six-step
★ design of experiment
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章、緒論 1
第二章、吸附簡介與文獻回顧 6
2-1 吸附之簡介 6
2-1-1 吸附基本原理 6
2-1-2等溫平衡吸附曲線 9
2-1-3 吸附劑及其選擇參數 12
2-1-4 PSA程序之發展與改進 15
2-1-5 突破曲線與脫附曲線 20
2-2 文獻回顧 23
第三章、煙道氣經變壓吸附程序分離二氧化碳之實驗設備及方法 29
3-1 變壓吸附程序吸附劑選擇 29
3-2 突破曲線實驗與脫附曲線實驗 34
3-2-1 實驗裝置、各部分規格及特性 35
3-2-2 實驗步驟 41
3-3 變壓吸附實驗 42
3-3-1 變壓吸附實驗裝置、各部分規格及特性 45
3-3-2 實驗步驟 49
第四章、煙道氣經變壓吸附程序分離二氧化碳之實驗結果與討論 52
4-1 突破曲線實驗與脫附曲線實驗結果與討論 52
4-1-1 塔內溫度對突破曲線的影響 53
4-1-2 進料體積流率對突破曲線的影響 55
4-1-3 塔內溫度對脫附曲線的影響 57
4-1-4 進料體積流率對脫附曲線的影響 59
4-2 變壓吸附實驗之實驗設計分析 61
4-2-1 部分因子實驗設計之參數選擇 66
4-2-2 Effects plot之分析 72
4-2-3 主效用圖(Main effect plot)與交互作用圖(Interaction plot) 80
4-2-4 迴歸模型(Regression model)的建立 86
4-2-5 殘差分析(Residual analysis) 88
4-2-6 迴歸模型(Regression model)與實驗值的比較 94
4-2-7 迴歸模型(Regression model)的修正 97
第五章、結論 103
參考文獻 105
附錄A 變壓吸附程序詳細數據 109
參考文獻 [1]IEA. "CO2 Emissions from Fuel Combustion." https://www.iea.org/statistics/co2emissions/. (accessed 2018).
[2]台灣電力公司. "近五年火力發電化石燃料耗用量." https://www.taipower.com.tw/tc/chart/b04_發電資訊_火力營運現況與績效_近五年火力發電化石燃料耗用量_.html. (accessed 2018).
[3]R. M. Cuéllar-Franca and A. Azapagic, "Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts," Journal of CO2 Utilization, vol. 9, pp. 82-102, 2015.
[4]J. Park, R. H. Kang, and J. W. Lee, "Efficient pressure swing adsorption for improving H2 recovery in precombustion CO2 capture," Korean J. Chem. Eng, vol. 34, pp. 1763-1773, 2017.
[5]M. A. Nemitallah, M. A. Habib, H. M. Badr, S. A. Said, A. Jamal, R. Ben-Mansour, E. M. A. Mokheimer, and K. Mezghani, "Oxy-fuel combustion technology: current status, applications, and trends," (in English), Int. J. Energy Res., Review vol. 41, no. 12, pp. 1670-1708, Oct 2017.
[6]A. Mukherjee, J. A. Okolie, A. Abdelrasoul, C. Niu, and A. K. Dalai, "Review of post-combustion carbon dioxide capture technologies using activated carbon," Journal of Environmental Sciences-China, vol. 83, pp. 46-63, Sep 2019.
[7]Y. Wang, L. Zhao, A. Otto, M. Robinius, and D. Stolten, "A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants," Energy Procedia, vol. 114, pp. 650-665, 2017.
[8]L. Giordano, J. Gubis, G. Bierman, and F. Kapteijn, "Conceptual design of membrane-based pre-combustion CO2 capture process: Role of permeance and selectivity on performance and costs," (in English), J. Membr. Sci., Article vol. 575, pp. 229-241, Apr 2019.
[9]洪文雅, "淺談溫室氣體減量實務技術," 永續產業發展雙月刊, pp. 21-27, 2007.
[10]N. E. T. Laboratory, "Advanced Carbon Dioxide Capture R&D Program: Technology Update," The United States Department of Energy, 2013.
[11]D. G. Pahinkar and S. Garimella, "A novel temperature swing adsorption process for natural gas purification, Part II: Performance assessment," Separation and Purification Technology, vol. 204, pp. 81-89, Oct 2018.
[12]A. K. Rajagopalan, A. M. Avila, and A. Rajendran, "Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2," International journal of greenhouse gas control, vol. 46, pp. 76-85, 2016.
[13]C.W.Skarstrom, "in Recent Developments in Separation Science," US Patent 2944627, 1960.
[14]A. E. Rodrigues, M. D. LeVan, and D. Tondeur, Adsorption: science and technology. Kluwer academic publishers, 1988.
[15]W. J. Thomas and D. Barry, Adsorption technology and design. Butterworth-Heinemann, 1998.
[16]R. T. Yang, Gas seperation by adsorption process. Imperial College Press, 1997.
[17]D. Daniel and M. P. G. De, "Process for separating a binary gaseous mixture by adsorption," United States Patent 3,155,468, 1964.
[18]W. D. Marsh, F. S. Pramuk, R. C. Hoke, and C. W. Skarstrom, Pressure equalization depressuring in heatless adsorption. Exxon research engineering co, 1964.
[19]B. K. Na, H. L. Lee, K. K. Koo, and H. K. Song, "Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon," Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[20]K. Chihara and M. Suzuki, "Air drying by pressure swing adsorption," J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[21]J. J. Collins, "Air separation by adsorption," United States Patent 4,026,680, 1975.
[22]Y. H. Kim, J. J. Kim, and C. H. Lee, "Adsorptive cyclic purification process for CO2 mixtures captured from coal power plants," AIChE Journal, vol. 63, no. 3, pp. 1051-1063, 2017.
[23]Z. Liu, L. Wang, X. Kong, P. Li, J. Yu, and A. E. Rodrigues, "Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant," Industrial & Engineering Chemistry Research, vol. 51, no. 21, pp. 7355-7363, 2012.
[24]A. Fuderer and E. Rudelstorfer, "Selective adsorption process," United States Patent 3,986,849, 1976.
[25]L. Wang, Z. Liu, P. Li, J. Wang, and J. Yu, "CO2 capture from flue gas by two successive VPSA units using 13XAPG," Adsorption, vol. 18, no. 5-6, pp. 445-459, 2012.
[26]L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu, and A. E. Rodrigues, "Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant," Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[27]M. Khurana and S. Farooq, "Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture," Chemical Engineering Science, vol. 152, pp. 507-515, 2016.
[28]H. Prats, D. Bahamon, G. Alonso, X. Giménez, P. Gamallo, and R. Sayós, "Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes," Journal of CO2 Utilization, vol. 19, pp. 100-111, 2017.
[29]G. N. Nikolaidis, E. S. Kikkinides, and M. C. Georgiadis, "Model-Based Approach for the Evaluation of Materials and Processes for Post-Combustion Carbon Dioxide Capture from Flue Gas by PSA/VSA Processes," Industrial & Engineering Chemistry Research, vol. 55, no. 3, pp. 635-646, 2016.
[30]K. Warmuzinski, M. Tanczyk, and M. Jaschik, "Experimental study on the capture of CO2 from flue gas using adsorption combined with membrane separation," International Journal of Greenhouse Gas Control, vol. 37, pp. 182-190, 2015.
[31]S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi, and S. Farooq, "CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study," AIChE Journal, vol. 60, no. 5, pp. 1830-1842, 2014.
[32]Y. Shen, Y. Zhou, D. Li, Q. Fu, D. Zhang, and P. Na, "Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas," International Journal of Greenhouse Gas Control, vol. 65, pp. 55-64, 2017.
[33]J. White, "Development of a Pressure Swing Adsorption(PSA) Cycle for CO2 Capture From Flue Gas Using a 4-Bed PSA Apparatus," 2016.
[34]J. Ling, A. Ntiamoah, P. Xiao, P. A. Webley, and Y. Zhai, "Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture," Chemical Engineering Journal, vol. 265, pp. 47-57, 2015.
[35]L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu, and A. E. Rodrigues, "CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units," Industrial & Engineering Chemistry Research, vol. 52, no. 23, pp. 7947-7955, 2013.
[36]K. Kotoh, M.Tanaka, T. Sakamoto, S. Takashima, T. Tsuge, Y. Asakura, T. Uda, and T. Sugiyama, "Fusion science and technology," Fusion science and technology, vol. 56, pp. 173-178, 2009.
[37]P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter, and A. D. Ebner, "Purification of helium from a cryogenic natural gas nitrogen rejection unit," pp. 91-102, 2018.
[38]A. Golmakani, S. Fatemi, and J. Tamnanloo, "CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34," Industrial & engineering chemistry research, vol. 55, pp. 334-350, 2016.
[39]Y. A. Cengel and M. A. Boles, Thermodynamics : An engineering approach, fifth edtion. McGraw-Hill Inc., 2004.
[40]J. M. Smith and H. C. Ness, Introduction to chemical engineering thermodynamics. McGraw-Hill education, 1987.
[41]M. D. C, E. A. Peck, G. G. Vining, and A. G. Ryan, Introduction to Linear Regression Analysis, 5 ed. 2013.
[42]黎正中及唐麗英, 實驗設計與分析. 高立圖書, 2015.
指導教授 周正堂 楊閎舜(Cheng-Tung Chou Hong-Sung Yang) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明