博碩士論文 105324074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.232.51.247
姓名 曾姮誼(Heng-I Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 非水溶液之極性液滴在磺基甜菜鹼基材之特殊行為
(Peculiar Wetting Behavior of Nonaqueous Polar Liquids on Sulfobetaine Silane Surfaces)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗將磺基甜菜鹼矽烷(Sulfobetaine silane, SBSi)經水解縮合修飾至玻璃上而成一雙離子型表面,已知水及正十六烷(Hexadecane, HD)之液滴在此高表面能的SBSi基材上會展現自發性擴張行為。本研究討論了低蒸氣壓的極性液體在SBSi基材上之潤濕行為,像是二乙二醇單丁醚(Butyl diglycol, BDG)、二甲基甲醯胺(Dimethylformamide, DMF)、二甲基亞碸(Dimethyl sulfoxide, DMSO)等。我們依照液滴在SBSi基材上的行為分為三個類型:部分潤濕、完全潤濕、及非典型潤濕行為。BDG液體屬於部分潤濕行為,在基材上呈現液滴狀且接觸角約為25度。水及HD則屬於完全潤濕之液體,初始接觸角即小於五度,並隨著潤濕面積不斷擴張而持續下降。DMF及DMSO在SBSi基材上也展現自發性擴張行為,但其以不規則形狀向外擴張,且潤濕面積中含有一些孔洞,並能觀察到邊緣較中心厚的情況,造成此類非典型潤濕行為的原因為基材表面水分導致的Marangoni flow。接著將不同性質之液體混合,混合物液滴在SBSi基材仍能表現完全潤濕的擴張行為,並會受部分潤濕液體的影響而縮回,最後,在低遲滯表面的表面張力梯度造成液滴隨機移動。此外,也探討純液滴置於以界面活性劑進行表面物理改質之SBSi基材,進而分析不同濃度變化所造成的液滴行為改變。瞭解液體在固體基材的行為,能應用在工業上的清洗操作及日常生活中的疏水塗層,藉由潤濕現象的理論基礎做為改善應用的依據。
摘要(英) The zwitterionic surface is fabricated by grafting sulfobetaine silane (SBSi) on a glass slide. On the SBSi substrate possessing high surface energy, both water and hexadecane (HD) drops exhibit spontaneous spreading behavior. In this work, the wetting behavior of polar liquids with low volatility, such as butyl diglycol (BDG), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) on SBSi surfaces were studied. Three types of wetting behavior are identified, (i) partial wetting, (ii) total wetting, and (iii) atypical spreading. BDG liquid belongs to the partial wetting type and forms a drop with low contact angle about 25°. The water and HD drops continuously spreads with circular wetting area, classified as the total wetting type. Although the DMF drop spreads spontaneously on SBSi surfaces, its shape is highly irregular. In addition, the ridge near the rim is developed and dry patches are created by the non-uniform advancement of contact lines. This atypical total wetting behavior is possibly driven by the Marangoni flow. After mixing the liquids of different types, the droplets of the mixture still exhibit spontaneous spreading behavior on the SBSi substrate, and retract under the influence of partially wetting liquids. Finally, on the hysteresis-free SBSi surface random motion of droplets was observed due to surface tension gradients. In addition, intriguing wetting phenomena was observed for pure liquid drops placed on surfactant contaminated SBSi surfaces. Understanding the behavior of liquids on solid substrates can be applied in industrial cleaning operations and hydrophobic coatings in everyday life, and the theoretical basis for wetting phenomena is used as a foundation for improving applications.
關鍵字(中) ★ 潤濕行為
★ 磺基甜菜鹼矽烷
關鍵字(英) ★ Wetting behavior
★ Sulfobetaine silane
論文目次 摘要 I
Abstract II
致謝 III
第1章 緒論 1
1-1 前言 1
1-1-1 雙離子型結構 2
1-1-2 極性溶液 4
1-2 基本原理 5
1-2-1 潤濕現象 (Wetting Phenomena) 5
1-2-1-1 楊氏方程式 (Young’s equation) 5
1-2-1-2 擴張係數 (Spreading coefficient) 7
1-2-1-3 溫佐方程式 (Wenzel’s equation) 8
1-2-1-4 卡西方程式 (Cassie’s equation) 9
1-2-2 接觸角遲滯 11
1-2-2-1 接觸角遲滯的定義 11
1-2-2-2 接觸角遲滯的成因 12
1-2-2-3 接觸角遲滯量測方法 13
1-2-3 去潤濕現象 (Dewetting) 16
1-2-4 完全潤濕現象 (Total wetting) 18
1-2-4-1 低界面張力液體(γLG)-矽油 18
1-2-4-2 Tanner’s law 19
1-2-4-3 表面能 (γSG) 20
1-3 文獻回顧 22
第2章 實驗步驟及方法 29
2-1 實驗藥品 29
2-2 實驗儀器及軟體 30
2-3 儀器原理 31
2-3-1 電漿表面清潔機 (Basic Plasma Cleaner) 31
2-3-2 影像式接觸角量測儀 32
2-3-3 巨觀放大顯微量測系統 34
2-4 實驗步驟及方法 35
2-4-1 製備磺基甜菜鹼矽烷 (SBSi) 35
2-4-2 製備超親水雙離子型基材 36
2-5 低接觸角分析分法 37
2-5-1 液滴面積與質心分析 37
2-5-2 球帽公式 (Spherical Cap) 38
第3章 純液滴在SBSi基材之潤濕行為 40
3-1 完全潤濕液體 41
3-1-1 典型擴張 41
3-1-2 非典型擴張 44
3-2 部分潤濕液體 49
3-3 不同濕度下的潤濕行為 50
3-4 非典型完全潤濕液體之機制 53
3-5 純液滴在康寧玻璃之潤濕行為 53
第4章 混合物液滴在SBSi基材之潤濕行為 57
4-1 典型與非典型完全潤濕液體之混合物液滴 57
4-2 部分潤濕與非典型完全潤濕液體之混合物液滴 59
4-3 界面活性劑粉末與非典型完全潤濕液體之混合物液滴 67
4-4 混合物液滴在康寧玻璃之潤濕行為 71
第5章 以界面活性劑進行表面物理改質之SBSi基材 74
5-1 陰離子型界面活性劑 74
5-2 陽離子型界面活性劑 76
5-3 非離子型界面活性劑 77
第6章 結論 78
第7章 參考文獻 81
參考文獻 [1] W. Barthlott and C. Neinhuis, “ Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces ”, Planta, 202, 1–8 (1997).
[2] R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama and G. M. Whitesides, “ Zwitterionic SAMs That Resist Nonspecific Adsorption of Protein from Aqueous Buffer ”, Langmuir, 17, 2841-2850 (2001).
[3] R. S. Kane, P. Deschatelets, and G. M. Whitesides, “ Kosmotropes form the Basis of Protein-Resistant Surfaces ” Langmuir, 19, 2388-2391 (2003).
[4] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe and N. Nakabayashi, “ Hemocompatibility of Human Whole-Blood on Polymers with a Phospholipid Polar Group and its Mechanism ”, Journal of Biomedical Materials Research, 26, 1543-1552 (1992).
[5] M.-C. Sin., S.-H., Chen, Y. Chang., Hemocompatibility of zwitterionic interfaces and membranes, Polymer Journal, 46, 436 (2014).
[6] D. J. Miller, S. Kasemset, L. Wang, D. R. Paul and B.D. Freeman, “ Constant Flux Crossflow Filtration Evaluation of Surface-Modified Fouling-Resistant Membranes ” Journal of Membrane Science, 452, 171−183 (2014).
[7] J. P. Nicot and I. J. Duncan, “ Common Attributes of Hydraulically Fractured Oil and Gas Production and CO2 Geological Sequestration”Greenhouse Gases: Science and Technology, 2, 352−368 (2012).
[8] Adam, N.K., Use of the Term ‘Young′s Equation’ for Contact Angles. Journal of Nature and Science, 1957. 180(4590): p. 809-810.
[9] Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research, 1936. 28(8): p. 988-994.

[10] Cassie, A.B.D. and S. Baxter, Cassie Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
[11] Joanny, J.F. and P.G. de Gennes, A model for contact angle hysteresis. The Journal of Chemical Physics, 1984. 81(1): p. 552-562.
[12] Yamada, S. and J. Israelachvili, Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. Journal of Physical Chemistry B, 1998. 102(1): p. 234-244.
[13] Kheshgi, H.S. and L.E. Scriven, Dewetting - Nucleation and Growth of Dry Regions. Chemical Engineering Science, 1991. 46(2): p. 519-526.
[14] Vossen, J.L., The preparation of substrates for film deposition using glow discharge techniques. Journal of Physics E : Scientific Instruments, 1979. 12: p. 159-167.
[15] Muller, P., G. Sudre, and O. Theodoly, Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes. Langmuir, 2008. 24(17): p. 95419550.
[16] MacCallum, N., et al., Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science & Engineering, 2015. 1(1): p. 43-51.
[17] Tanner, L.H., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D : Applied Physics, 1979. 12: p. 1473-1484.


[18] Fowkes, F.M., Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. journal of physical Chemistry 1962. 66: p. 382.
[19] Suzuk, T. and Y. Yamada, Dispersion and Polar Component of Specific Surface Free Energy of NaCl(100), KCl(100), and KBr(100) Single Crystal Surfaces. Journal of Crystallization Process and Technology, 2015. 05(03): p. 43-47.
[20] S. B. Yeh, C. S. Chen, W. Y. Chen, and C. J. Huang, “ Modification of Silicone Elastomer with Zwitterionic Silane for Durable Antifouling Properties ”, Langmuir, 30,11386–11393 (2014).
[21] K. T. Huang, S. B. Yeh, and C. J. Huang, “ Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation ”, ACS Applied Materials & Interfaces, 7, 21021–21029 (2015).
[22] Singh, V., Wu, C. J., Sheng, Y. J., & Tsao, H. K. (2017). Self-propulsion and shape restoration of aqueous drops on sulfobetaine silane surfaces. Langmuir, 33(24), 6182-6191.
[23] Scriven, L. E., & Sternling, C. V. (1960). The marangoni effects. Nature, 187(4733), 186.
[24] Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, Dewetting behavior of aqueous cationic surfactant solutions on liquid films. Langmuir, 2004. 20(18): p. 7575-7582.
[25] Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, The spreading of surfactant solutions on thin liquid films. Advances in Colloid and Interface Science, 2003. 106: p. 183-236.
[26] Stoebe, T., et al., Enhanced spreading of aqueous films containing ionic surfactants on solid substrates. Langmuir, 1997. 13(26): p. 7276-7281.
[27] Wu, C.-J., et al., Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine. RSC Adv., 2016. 6(30): p. 2482724834.
[28] Wang, Z.Y. (2017) Exotic wetting behavior of surfactant drops on SBSi. Department of Chemical and Material Engineering. National Central University.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2018-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明