博碩士論文 105324602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.15.206.200
姓名 葉智豪(Dhanang Edy Pratama)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藥物的回收:藉由萃取與再結晶將活性藥物成分從不同藥物中回收
(Drug Recycle: Recovery of Active Pharmaceutical Ingredients from Various Medications Using Solvent Extraction and Recrystallization)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇研究中,我們提出一種從市售藥物中回收其活性藥物成分(API)的方法,回收得到的API可經由配方加工重製為新產品;透過藥物再循環方案回收藥物中最重要成分–API,其步驟包括清洗、溶劑萃取及再結晶,本研究使用兩種API物作為示例,分別為:布洛芬(一種常用的抗炎藥)和普羅布考(一種抗高血脂藥物),首先,參考專利文獻,製備具有特定配方(API和賦形劑組成)的布洛芬和普羅布考藥物製劑,經過一系列的回收步驟,我們可從藥物製劑中分別成功回收63 w/w% 的布洛芬及73 w/w% 的普羅布考;其次,我們亦對市售布洛芬和普羅布考藥物進行測試,以確保我們所提出的方案亦可以應用於含有相同API但不同廠牌的藥物產品,即使賦形劑的含量和組成未知,根據實驗結果得知,使用相同的方法,市售的布洛芬和普羅布考分別成功地回收86 w/w%和73 w/w%。 此外,所有回收的API純度分析包含 FTIR、PXRD、DSC、UV-Vis光譜和 1H NMR等鑑定。
摘要(英) We proposed a method to recycle valuable active pharmaceutical ingredients (APIs) from various kind of medications, so later it could be re-formulated as a new product. In the drug recycle scheme, the most important component of the medication (the API) was recovered by drug recycle protocol which consisted of rinsing, solvent extraction, and recrystallization. The APIs used were ibuprofen, a common anti-inflammatory drug, and probucol, an anti-hyperlipidemic drug. Formulated ibuprofen and probucol with a fixed composition of the API and excipients were each prepared. Those APIs were recycled, in which up to 63 w/w% of ibuprofen and 73 w/w% of probucol were successfully recovered from drug formulations. Additionally, the procedure was also tested for commercially available medications to see if the established protocol could also be applied to any kind of drug products containing the same APIs, regardless of the excipient content and composition. Using the same method, ibuprofen and probucol were successfully extracted and recrystallized from the commercial drug products available in pharmacies, with the recovery of 86 and 73 w/w% for ibuprofen and probucol, respectively. The purity of all recovered APIs were verified by FTIR, PXRD, DSC, UV-Vis spectroscopy, and 1H NMR.
關鍵字(中) ★ 藥品回收
★ 活性藥物成分
★ 萃取
★ 結晶
關鍵字(英) ★ Drug Recycle
★ Active Pharmaceutical Ingredient
★ Extraction
★ Crystallization
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vii
List of Tables xiv
Chapter 1 Introduction 1
1.1 Problem of Medication Wastage 1
1.1.1 The Extent of Unused Medications Around Us 1
1.1.2 Pharmaceutical Donations 2
1.1.3 The Impact of Unused Drugs 4
1.2 Available Solutions to Unused Drugs Problems 5
1.3 Pharmaceutical Contents 6
1.3.1 Introduction to Active Pharmaceutical Ingredients (API) 6
1.3.2 Introduction of Excipients 10
1.4 Drug Recycle Attempt 11
1.5 Liquid-Solid Extraction 12
1.6 Solvents Used in Pharmaceutical Industries 14
1.7 Conceptual Framework 16
1.8 Scope of This Study 17
1.9 References 18
Chapter 2 Materials and Methods 26
2.1 Materials 26
2.1.1 Chemicals 26
2.1.2 Solvents 27
2.2 Experimental Procedures 28
2.2.1 General Overview of the Process 28
2.2.2 Case I: Recycle of Ibuprofen 35
2.2.3 Case II: Recycle of Probucol 41
2.3 Analytical Measurements 46
2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy 46
2.3.2 Differential Scanning Calorimetry (DSC) 47
2.3.3 Powder X-ray Diffraction (PXRD) 48
2.3.4 Ultraviolet and Visible Spectroscopy (UV-Vis) 49
2.3.5 Nuclear Magnetic Resonance Spectroscopy (NMR) 49
2.3.6 Optical Microscopy (OM) 50
2.4 References 51
Chapter 3 Results and Discussion 52
3.1 Results 52
3.1.1 Case I: Recovery of Ibuprofen 52
3.1.2 Case II: Recovery of Probucol 62
3.2 Discussion 72
3.2.1 Recovery Analysis 72
3.2.2 The Use of SDS as Rinsing Solution 75
3.2.3 Cost Estimation of API Synthesis vs API Recovery 76
3.2.4 Process Comparison 80
3.2.5 Process Scale-up 84
3.3 References 86
Chapter 4 Conclusions and Future Works 88
4.1 Conclusions 88
4.2 Future Works 89
Supplementary Information 90
A. Solubility of APIs and Excipients Used in This Study 91
B. Photographs of Drug Recycle Experiments 92
C. OM Images of API Crystals 94
D. Seeding Effect on Probucol Polymorphs 95
E. Price List of Chemicals for Cost Analysis 97
F. Records of Experimental Results and Mass Balance of the Processes 99
參考文獻 (1) Taiwan News (臺灣英文新聞). 193 tons of Prescription Medication are Thrown Away in Taiwan per Year https://www.taiwannews.com.tw/en/news/3437177 (accessed Jun 20, 2018).
(2) US Drug Enforcement Agency. DEA Brings in Record Number of Unused Pills During 15th Annual National Prescription Drug Take Back Day https://www.dea.gov/divisions/hq/2018/hq050718.shtml (accessed Apr 22, 2018).
(3) Law, A. V.; Sakharkar, P.; Zargarzadeh, A.; Tai, B. W. B.; Hess, K.; Hata, M.; Mireles, R.; Ha, C.; Park, T. J. Taking Stock of Medication Wastage: Unused Medications in US Households. Res. Soc. Adm. Pharm. 2015, 11 (4), 571–578.
(4) Zargazadeh, A. H.; Tavakoli, N.; Hassanzadeh, A. A Survey on the Extent of Medication Storage and Wastage in Urban Iranian Households. Clin. Ther. 2005, 27 (6), 960–969.
(5) Abou-Auda, H. S. An Economic Assessment of the Extent of Medication Use and Wastage Among Families in Saudi Arabia and Arabian Gulf Countries. Clin. Ther. 2003, 25 (4), 1276–1292.
(6) Daughton, C. G. Drugs and the Environment?: Stewardship & Sustainability; Las Vegas, NV, 2010.
(7) Gray, R. C. F.; Hogerzeil, H. V.; Pruss, A. M.; Rushbrook, P. Guideline of Safe Disposal of Unused Pharmaceuticals in and After Emergencies; Geneva, 1999.
(8) Bero, L.; Carson, B.; Moller, H.; Hill, S. To Give is Better Than to Receive: Compliance with WHO Guidelines for Drug Donations during 2000-2008. Bull. World Health Organ. 2010, 88 (12), 922–929.
(9) Benaragama; Fernandopulle, R. The Expectations, The Reality and The Burden of Drug Donations; Colombo, 2010.
(10) Berckmans, P.; Dawans, V.; Schmets, G.; Vandenbergh, D.; Autier, P. Inappropriate Drug-Donation Practices In Bosnia and Herzegovina, 1992 to 1996. N. Engl. J. Med. 1997, 337 (December 18), 1839–1845.
(11) Pharmaciens Sans Frontieres Comite International. Study on Drug Donations in the Province of Aceh in Indonesia; Bordeaux, 2005.
(12) Agence France-Presse. In Indonesia, a Tsunami of Useless edicines http://www.terradaily.com/2006/060728020734.9kesgdli.html (accessed May 31, 2018).
(13) Hairapetian, A.; Alexanian, A.; Ferir, M. C.; Agoudjian, V.; Schmets, G.; Dallemagne, G.; Leva, M. N.; Pinel, J.; Autier, P. Drug Supply in the Aftermath of the 1988 Armenian Earthquake. Lancet 1990, 335 (8702), 1388–1390.
(14) Ali, H. M.; Homeida, M. M. A.; Abdeen, M. A. E. R. “Drug Dumping” in Donations to Sudan. Lancet 1988, March 5 (1(8584)), 538–539.
(15) Offerhaus, L. Russia: Emergency Drugs Aid Goes Awry. Lancet 1992, 339 (March 7), 607.
(16) Wallerstein, C. Unusable Medicines “Dumped” on Venezuela. BMJ 2000, 320 (June), 1491.
(17) Pomerantz, J. M. Recycling Expensive Medication: Why Not?? MedGenMed 2004, 6 (2), 1–10.
(18) Allen, M. Wasted Medicine: America’s Other Drug Problem. ProPublica. New York April 27, 2017.
(19) Glassmeyer, S. T.; Hinchey, E. K.; Boehme, S. E.; Daughton, C. G.; Ruhoy, I. S.; Conerly, O.; Daniels, R. L.; Lauer, L.; Mccarthy, M.; Nettesheim, T. G.; et al. Disposal Practices for Unwanted Residential Medications in the United States. Environ. Int. 2009, 35 (3), 566–572.
(20) Mceachran, A. D.; Shea, D.; Bodnar, W.; Nichols, E. G. Pharmaceutical Occurrence in Groundwater and Surface Waters in Forests Land-Applied with Municipal Wastewater. Environ. Toxicol. Chem. 2016, 35 (4), 898–905.
(21) Deo, R. P. Pharmaceuticals in the Surface Water of the USA: A Review. Curr. Environ. Heal. Reports 2014, 1 (2), 113–122.
(22) Chevre, N. Pharmaceuticals in Surface Waters: Sources, Behavior, Ecological Risk, and Possible Solutions. Case Study of Lake Geneva, Switzerland. Wiley Interdiscip. Rev. Water 2014, 1 (1), 69–86.
(23) Glassmeyer, S.; Furlong, E.; Kolpin, D.; Cahill, J.; Zaugg, S. Transport of Chemical and Microbial Compounds from Known Wastewater Discharges?: Potential for Use as Indicators of Human Fecal Contamination. 2005, 5157–5169.
(24) Ashton, D.; Hilton, M.; Thomas, K. V. Investigating the Environmental Transport of Human Pharmaceuticals to Streams in the United Kingdom. Sci. Total Environ. 2004, 333 (1–3), 167–184.
(25) Batt, A. L.; Bruce, I. B.; Aga, D. S. Evaluating the Vulnerability of Surface Waters to Antibiotic Contamination from Varying Wastewater Treatment Plant Discharges. Environ. Pollut. 2006, 142 (2), 295–302.
(26) Fram, M. S.; Belitz, K. Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California. Sci. Total Environ. 2011, 409 (18), 3409–3417.
(27) Scheytt, T.; Mersmann, P.; Leidig, M.; Pekdeger, A.; Heberer, T. Transport of Pharmaceutically Active Compounds in Saturated Laboratory Columns. Ground Water 2004, 42 (5), 767–773.
(28) Verstraeten, I. M.; Fetterman, G. S.; Meyer, M. J.; Bullen, T.; Sebree, S. K. Use of Tracers and Isotopes to Evaluate Vulnerability of Water in Domestic Wells to Septic Waste. Gr. Water Monit. Remediat. 2005, 25 (2), 107–117.
(29) Stackelberg, P. E.; Gibs, J.; Furlong, E. T.; Meyer, M. T.; Zaugg, S. D.; Lippincott, R. L. Efficiency of Conventional Drinking-Water-Treatment Processes in Removal of Pharmaceuticals and Other Organic Compounds. Sci. Total Environ. 2007, 377 (2–3), 255–272.
(30) Kummerer, K. Drugs in the Environment: Emission of Drugs, Diagnostic Aids and Disinfectants into Wastewater by Hospitals in Relation to Other Sources - A Review. Chemosphere 2001, 45 (6–7), 957–969.
(31) Popken, B. Patients Beg For Pricey Drugs On Facebook Black Market https://www.nbcnews.com/business/consumer/patients-beg-pricey-drugs-facebook-black-market-n754266 (accessed Jun 7, 2018).
(32) Penjual Obat di Pasar 16 Ilir Ini Beli Obat Bekas dari Sembarang Orang, Faktanya http://palembang.tribunnews.com/2017/10/02/penjual-obat-di-pasar-16-ilir-ini-beli-obat-bekas-dari-sembarang-orang-faktanya (accessed Jun 7, 2018).
(33) Allen, M. That Drug Expiration Date May Be More Myth Than Fact. ProPublica. New York July 18, 2017.
(34) Cantrell, L.; Suchard, J. R.; Wu, A.; Gerona, R. R. Stability of Active Ingredients in Long-Expired Prescription Medications. ArchInternMed 2012, 172 (21), 1685–1687.
(35) Lyon, R. C.; Taylor, J. E. B. S.; Porter, D. A.; Prasanna, H. R.; Hussain, A. S. Stability Profiles of Drug Products Extended beyond Labeled Expiration Dates. J. Pharm. Sci. 2006, 95 (7), 1549–1560.
(36) Cantrell, L.; Cantrell, P.; Wen, A.; Gerona, R. R. Epinephrine Concentrations in EpiPens After the Expiration Date. Ann. Intern. Med. 2017, 166 (12), 918–919.
(37) U.S. Food and Drug Administration. Don’t Be Tempted to Use Expired Medicines https://www.fda.gov/Drugs/ResourcesForYou/SpecialFeatures/ucm481139.htm (accessed Feb 22, 2018).
(38) International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Q7 Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients, Guidance for Industry; 2016.
(39) Transparency Market Research. Active Pharmaceutical Ingredients Market to be worth 219.60 Billion USD by 2023?: TMR https://globenewswire.com/news-release/2016/09/20/873069/0/en/Active-Pharmaceutical-Ingredients-Market-to-be-worth-219-60-Billion-USD-by-2023-TMR.html (accessed Jun 5, 2018).
(40) Rainsford, K. D. Fifty Years Since the Discovery of Ibuprofen. Inflammopharmacology 2011, 19 (6), 293–297.
(41) Front Research. Global Ibuprofen Demand to Grow Stably in Upcoming Years http://www.frontresearch.com/news/global-ibuprofen-demand-to-grow-stably-in-upcoming-years/ (accessed Feb 28, 2018).
(42) Herzfeldt, C. D.; Kummel, R. Dissociation Constants, Solubilities and Dissolution Rates of Some Selected Nonsteroidal Antiinflammatories. Drug Dev. Ind. Pharm. 1983, 9 (5), 767–793.
(43) Potthast, H.; Dressman, J. B.; Junginger, H. E.; Midha, K. K.; Oeser, H.; Shah, V. P.; Vogelpoel, H.; Barends, D. M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ibuprofen. J. Pharm. Sci. 2005, 94 (10), 2121–2131.
(44) Dudognon, E.; Danede, F.; Descamps, M.; Correia, N. T. Evidence for a New Crystalline Phase of Racemic Ibuprofen. Pharm. Res. 2008, 25 (12), 2853–2858.
(45) Derollez, P.; Dudognon, E.; Affouard, F.; Danede, F.; Correia, N. T.; Descamps, M. Ab initio structure determination of phase II of racemic ibuprofen by X-ray powder diffraction. Acta Crystallogr. Sect. B Struct. Sci. 2010, 66 (1), 76–80.
(46) Armitage, B. J.; Lampard, J. F.; Smith, A. Composition of S-Sodium Ibuprofen. U.S. Patent No. 6,242,000 B1, 2001.
(47) Bruzzese, T.; Ferrari, R. Method of Relieving Pain and Treating Inflammatory Conditions in Warm-Blooded Animals. U.S. Patent No. 4,279,926, 1981.
(48) Lee, T.; Wang, Y. W. Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Dev. Ind. Pharm. 2009, 35 (5), 555–567.
(49) Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72–87.
(50) Atkinson, H. C. Pharmaceutical Composition of Ibuprofen and Paracetamol and Methods of Using the Same. U.S. Patent Application No. 2011/0275718 A1, 2011.
(51) Tidmarsh, G.; Golombik, B. L.; Sharma, P. Methods and Medicaments for Administration of Ibuprofen. U.S. Patent Application No. 2008/0021078 A1, 2018.
(52) Elango, V.; Murphy, M. A.; Smith, B. L.; Davenport, K. G.; Mott, G. N.; Moss, G. L. Method for Producing Ibuprofen. U.S. Patent No. 4,981,995, 1991.
(53) Cann, M. C.; Connelly, M. E. The BHC Company Synthesis of Ibuprofen: A Greener Synthesis of Ibuprofen Which Creates Less Waste and Fewer Byproducts. In Real World Cases in Green Chemistry; American Chemical Society: Washington DC, 2000; pp 19–24.
(54) Yamashita, S.; Matsuzawa, Y. Where are We with Probucol: A New Life for an Old Drug? Atherosclerosis 2009, 207 (1), 16–23.
(55) Barnhart, J. W.; Sefranka, J. A.; McIntosh, D. D. Hypocholesterolemic Effect of 4,4’-(Isopropylidenedithio)-Bis(2,6-di-t-Butylphenol) (Probucol). Am. J. Clin. Nutr. 1970, 23 (9), 1229–1233.
(56) Yamashita, S.; Masuda, D.; Matsuzawa, Y. Did We Abandon Probucol Too Soon? Curr. Opin. Lipidol. 2015, 26 (4), 304–316.
(57) ThePharmaLetter. Hoechst Marion Roussel Pulls Probucol from US Market https://www.thepharmaletter.com/article/hoechst-marion-roussel-pulls-probucol-from-us-market (accessed Apr 3, 2018).
(58) Gerber, J. J.; Caira, M. R.; Lotter, A. P. Structures of Two Conformational Polymorphs of the Cholesterol-Lowering Drug Probucol. J. Crystallogr. Spectrosc. Res. 1993, 23 (11), 863–869.
(59) Merck Index, 11th ed.; Budavari, S., Ed.; Merck and Co. Inc.: Rahway, New Jersey, 1989.
(60) Giordano, C.; Barreca, G. Process for Preparing an Intermediate Useful In the Synthesis of Probucol. U.S. Patent No. 5,157,156, 1992.
(61) Chaudhari, S. P.; Patil, P. S. Pharmaceutical Excipients?: A Review. Int. J. Adv. Pharmacy, Biol. Chem. 2012, 1 (1), 21–34.
(62) Haywood, A.; Glass, B. Pharmaceutical Excipients – Where do We Begin? Aust. Prescr. 2011, 34 (4), 112–114.
(63) International Excipients Certification. International Excipients Certification Project: Minimize Risks – Maximize Benefits; London, 2009.
(64) Atwood, J. L. Separation of Active Pharmaceutical Ingredients (APIs) from Excipients in Pharmaceutical Formulations. Cryst. Growth Des. 2015, 15 (6), 2874–2877.
(65) Atwood, J. L. Separation Method for Active Pharmaceutical Ingredients from Excipients. U.S. Patent Application No. 2016/0340350 A1, 2016.
(66) Hsieh, D. S.; Lindrud, M.; Lu, X.; Zordan, C.; Tang, L.; Davies, M. A Process for Active Pharmaceutical Ingredient Recovery from Tablets Using Green Engineering Technology. Org. Process Res. Dev. 2017, 21, 1272–1285.
(67) Geankoplis, C. J. Transport Processes and Unit Operations, 3rd ed.; Prentice-Hall, 1993.
(68) McCabe, W. L.; Smith, J. C.; Harriott, P. Unit Operations of Chemical Engineering, 5th ed.; McGraw Hill Co.: Singapore, 1993.
(69) Frey, E.; Slater, C. S.; Savelski, M. J.; Hesketh., R. P. Selection and Reduction of Organic Solvents in the Pharmaceutical Industry. In Paper 17 presented at the American Chemical Society 10th Green Chemistry and Engineering Conference; Washington, 2006.
(70) Grodowska, K.; Parczewski, A. Organic Solvents in the Pharmaceutical Industry. Acta Pol. Pharm. 2010, 67 (1), 3–12.
(71) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Q3C: Impurities: Guideline for Residual Solvents. 2016.
(72) Sasmal, B. K.; Billa, P. R.; Nasare, V. D.; Mohan, M. S.; Jayanthi, S.; Dubey, R.; Avvaru, S.; Satti, P. R.; Manas, R. M.; Chidipothu, A.; et al. Fixed Dose Drug Combination Formulations. U.S. Patent Application No. 2012/0045505 A1, 2012.
(73) Parikh, S. J.; Chorover, J. FTIR Spectroscopic Study of Biogenic Mn-Oxide Formation by Pseudomonas putida GB-1. Geomicrobiol. J. 2005, 22 (5), 207–218.
(74) Chen, Y.; Zou, C.; Mastalerz, M.; Hu, S.; Gasaway, C.; Tao, X. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review. Int. J. Mol. Sci. 2015, 16 (12), 30223–30250.
(75) Farkas, S. Z.; Imre, S.; Muntean, D. L.; Tero-Vescan, A. Analysis of Drug Related Impurities by Infrared Spectrometry in the Class of Statins. Farmacia 2013, 61 (6), 1091–1101.
(76) Randall, C.; Rocco, W. L.; Ricou, P. XRD in Pharmaceutical Analysis?: A Versatile Tool for Problem-Solving. Am. Pharm. Rev. 2010, 13 (6), 52–59.
(77) Anderson, R. J.; Bendell, D. J.; Groundwater, P. W. Organic Spectroscopic Analysis; The Royal Society of Chemistry: Cambridge, 2004; Vol. 22.
(78) Lim, J. S.; Choi, H.; Lim, I. S.; Park, S. B.; Lee, Y. S.; Kim, S. K. Photodissociation Dynamics of Thiophenol-d1: The Nature of Excited Electronic States Along the s-d Bond Dissociation Coordinate. J. Phys. Chem. A 2009, 113 (39), 10410–10416.
(79) Zhang, L.; Zhou, S.; Wang, S.; Wang, L.; Li, J. Surfactant Surface Tension Effects on Promoting Hydrate Formation: An Experimental Study Using Fluorocarbon Surfactant (Intechem-01) + SDS Composite Surfactant. J. Environ. Prot. (Irvine,. Calif). 2013, 04 (05), 42–48.
(80) Lu, J.; Wang, X. J.; Yang, X.; Ching, C. B. Polymorphism and Crystallization of Famotidine. Cryst. Growth Des. 2007, 7 (9), 1590–1598.
(81) Jones, H. P.; Davey, R. J.; Cox, B. G. Crystallization of a Salt of a Weak Organic Acid and Base: Solubility Relations, Supersaturation Control and Polymorphic Behavior. J. Phys. Chem. B 2005, 109 (11), 5273–5278.
(82) Beckmann, W. Seeding the Desired Polymorph: Background, Possibilities, Limitations, and Case Studies. Org. Process Res. Dev. 2000, 4 (5), 372–383.
(83) Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy, 3rd ed.; Thomson Learning, Inc.: Bellingham, 2001.
指導教授 李度(Tu Lee) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明