博碩士論文 105326004 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:
姓名 王瑜慧(Yu-Hui Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
(Characteristics and sources of carbonaceous aerosols and PM1.0 in Taipei urban area)
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-11-29以後開放)
摘要(中) 現今雖然已有許多關於交通排放進行氣膠特性分析的研究,但對於超細懸浮微粒PM1.0與都市背景碳來源評估仍較缺乏,故本研究選擇在都市中高車流量地區利用最新七波段氣膠吸收光儀 (Aethalometer, Magee, AE33)於不同波段的吸光訊號評估不同黑碳來源排放,並建立即時監測系統進行道路連續監測,同時進行測量的儀器還包括錐形元件震盪微量天平 (TEOM, R&P 1400a)、奈米微粒表面積監測儀 (NSAM, TSI 3550)和掃描式電移動度粒徑分析儀 (SMPS, TSI 3936)。分別量測黑碳濃度、質量濃度、表面積濃度、數目濃度和粒徑分佈,並以氣象塔紀錄環境溫、濕度變化、風速和風向的分布。利用上述不同量測結果與氣象資料進行分析,由不同研究方式的結果作綜合性分析及整合,探討都市環境中微粒與黑碳成份與來源隨時間的濃度變化和特性。
量測結果分析上,在六個月量測期間,顯示黑碳、數目濃度與肺部沉積受到交通量與季節變化較明顯 。在一日變化分析上,黑碳、數目濃度與肺部沉積表面積在平日尖峰時刻有明顯峰值,顯示在此量測地區黑碳、數目濃度與肺部沉積表面積可做為交通排放指標。微粒特性結果顯示,幾何平均、密度、BC/PM1.0與AAE在整個量測期間晝夜變化明顯,顯示白天交通排放明顯。有效密度與AAE值,分別介於0.3 g/cm3 ~ 2.0 g/cm3之間與1.1~1.3之間。
碳來源分析上,利用Aethalometer model計算求得BCTr與BCBrC,分別代表交通排放的黑碳與含有較高有機成分的褐碳。在整個量測期間,發現不同風向影響BCTr與BCBrC濃度分佈明顯。由一日變化結果顯示在東風(60o~120 o)方向下污染來源受到近交通排放影響,東南風(120o~180 o)方向下的褐碳則在早上、中午與晚上的用餐時間有峰值,顯示可能受到人為排放影響,例如:廚房油煙。而在西南(180o~270 o)方向下在風速較大時濃度較高,顯示可能受到較遠處交通排放影響。
不同風向特徵分析上,頻率分布結果顯示東風方向微粒粒徑與有效密度在三個風向下最小,確立在東風方向下微粒主要受到近交通排放影響。而在西南風向下,幾何平均粒徑與黑碳所佔比例在三段風向下最大,主要受到較遠高速公路的污染物傳輸所影響,且高速公路可能多含有柴油引擎排放,其排放成分相較於其他種類汽車含有較多黑碳。在不同風向下微粒粒徑分佈隨著東風、東南風與西南風向分佈越大,分別代表近交通排放的影響、交通排放與人為活動排放影響以及較遠高速公速傳輸老化微粒影響,微粒粒徑分佈鋒值則分別為28 nm、40 nm與51 nm。此外,進行不同風向下個測量值之間相關性作分析,加強不同風向下不同污染來源的證據。而由Aethalometer model模型計算求得的BCTr與BCBrC與其他量測結果相符合,也與各量測值具有相關性。
摘要(英) This study established a real-time monitoring system and placed in a trailer station located in Taipei urban high-traffic area. Aethalometer (Magee, AE33), which can provide absorption signals at seven wavelengths, was used to evaluate equivalent black carbon (BC), potential brown carbon (BrC) and their related sources. At the same time, Tapered Element Oscillating Microbalances (TEOM). R&P 1400a), Nanoparticle Surface Area Monitor (NSAM, TSI 3550) and Scanning Mobility Particle Sizer (SMPS, TSI 3080) were employed to measure black carbon concentration, mass concentration, surface area concentration, number concentration, and particle size distribution, respectively. All-In-One Weather Sensor (AIO Weather, Climatronics) was used to record environmental temperature and humidity, wind speed and wind direction. In terms of integrating different measurements and meteorological data, a comprehensive picture of characteristics of PM1.0 and black carbon in Taiwan urban environment was clearly depicted. It was found BC, particle number concentration and lung deposition surface area concentration were significantly affected by the traffic volume and demonstrated seasonal variations. Their diurnal patterns in workdays all have clear peaks at rush hours, which suggest that BC, number concentration and lung deposition surface area concentration can be good indicators for traffic related emissions. In addition, particle size, density, BC/PM1.0 and AAE also have strong diurnal variations and influenced by traffic related emissions as well. The effective density and AAE range from 0.3 g/cm3 to 2.0 g/cm3 and between 1.1 and 1.3, respectively.
Based on the wind-roses analysis, in the east (60o~120o), near/fresh traffic emissions is the dominant source of particulate pollutions. In the southeast (120o~180o), BrC concentrations show peaks in the morning, noon and evening, indicating that human activities, such as cooking, could be the emission sources. In the southwest (180o~270o), the concentration is higher when the wind speed is larger, implying that it is affected by the far-distance/transported traffic related emissions. Furthermore, the frequency distribution results show that the particle size and effective density are smallest in the east wind direction. While, the particle size and effective density are the largest in the southwest wind direction, reflecting the influences of aging particles transported from a highway located at 3 km away. The particle size distributions also echo the impacts of traffic emissions and human activities emissions. The results of correlation analysis between different measurements again evidence the influences of wind directions and the potential emission sources. In the source analysis of carbonaceous aerosols, BCTr and BrC were calculated by the Aethalometer model. During the observation period, it was found that the relative abundance of BCTr and BrC is varying with wind directions and consistent with the conclusions mentioned here.
關鍵字(中) ★ 黑碳
★ 交通排放
★ 來源分析
★ PM1.0
關鍵字(英) ★ PM1.0
★ Source analysis
★ Traffic emissions
★ Black carbon
論文目次 目錄
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究緣起 2
1-3研究目的 2
第二章 文獻回顧 3
2-1交通排放 3
2-2含碳氣膠 14
第三章 研究方法 21
3-1實驗監測地點與量測時間 21
3-2實驗系統與儀器設備 27
3-3結果分析方法 31
第四章 監測結果與討論 36
4-1量測期間氣象條件 38
4-2微粒特徵分析及結果比較 41
4-3碳來源分析結果 59
4-4不同風向下微粒特徵分析 63
第五章 結論 76
參考文獻 78
口試意見回覆 87
參考文獻 1. Abdul-Khalek, I. S., D. Kittelson, B. R. Graskow, Q. Wei and F. Bear (1998). Diesel exhaust particle size: measurement issues and trends, SAE Technical Paper.
2. Amato, F., M. Pandolfi, A. Escrig, X. Querol, A. Alastuey, J. Pey, N. Perez and P. Hopke (2009). "Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2." Atmospheric Environment 43(17): 2770-2780.
3. Asgharian, B., R. Wood and R. Schlesinger (1995). "Empirical modeling of particle deposition in the alveolar region of the lungs: a basis for interspecies extrapolation." Toxicological Sciences 27(2): 232-238.
4. Bahreini, R., A. Middlebrook, J. d. Gouw, C. Warneke, M. Trainer, C. Brock, H. Stark, S. Brown, W. Dube and J. Gilman (2012). "Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass." Geophysical Research Letters 39(6).
5. Bonazza, A., P. Brimblecombe, C. M. Grossi and C. Sabbioni (2007). "Carbon in black crusts from the Tower of London." Environmental science & technology 41(12): 4199-4204.
6. Bond, T. C. and R. W. Bergstrom (2006). "Light absorption by carbonaceous particles: An investigative review." Aerosol science and technology 40(1): 27-67.
7. Bond, T. C., S. J. Doherty, D. Fahey, P. Forster, T. Berntsen, B. DeAngelo, M. Flanner, S. Ghan, B. Kärcher and D. Koch (2013). "Bounding the role of black carbon in the climate system: A scientific assessment." Journal of Geophysical Research: Atmospheres 118(11): 5380-5552.
8. Change, I. P. O. C. (2007). "Climate change 2007: The physical science basis." Agenda 6(07): 333.
9. Charron, A. and R. M. Harrison (2003). "Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere." Atmospheric Environment 37(29): 4109-4119.
10. Cheng, Y.-H., C.-W. Liao, Z.-S. Liu, C.-J. Tsai and H.-C. Hsi (2014). "A size-segregation method for monitoring the diurnal characteristics of atmospheric black carbon size distribution at urban traffic sites." Atmospheric environment 90: 78-86.
11. Deng, J., Z. Xing, B. Zhuang and K. Du (2014). "Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait." Atmospheric research 143: 266-278.
12. Elder, A., R. Gelein, J. N. Finkelstein, K. E. Driscoll, J. Harkema and G. n. Oberdörster (2005). "Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology." Toxicological Sciences 88(2): 614-629.
13. Ervens, B., M. Cubison, E. Andrews, G. Feingold, J. Ogren, J. Jimenez, P. Quinn, T. Bates, J. Wang and Q. Zhang (2010). "CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations." Atmospheric Chemistry and Physics 10(10): 4795-4807.
14. Franck, U., S. Odeh, A. Wiedensohler, B. Wehner and O. Herbarth (2011). "The effect of particle size on cardiovascular disorders—The smaller the worse." Science of the Total Environment 409(20): 4217-4221.
15. Garg, S., B. P. Chandra, V. Sinha, R. Sarda-Esteve, V. Gros and B. Sinha (2015). "Limitation of the use of the absorption angstrom exponent for source apportionment of equivalent black carbon: a case study from the North West Indo-Gangetic Plain." Environmental science & technology 50(2): 814-824.
16. Giechaskiel, B., M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann and W. Schindler (2014). "Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number." Journal of Aerosol Science 67: 48-86.
17. Graue, B., S. Siegesmund, P. Oyhantcabal, R. Naumann, T. Licha and K. Simon (2013). "The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten cathedrals." Environmental earth sciences 69(4): 1095-1124.
18. Guarnieri, M. and J. R. Balmes (2014). "Outdoor air pollution and asthma." The Lancet 383(9928): 1581-1592.
19. Hadley, O. L. and T. W. Kirchstetter (2012). "Black-carbon reduction of snow albedo." Nature Climate Change 2(6): 437.
20. Jansen, R. C., Y. Shi, J. Chen, Y. Hu, C. Xu, S. Hong, J. Li and M. Zhang (2014). "Using hourly measurements to explore the role of secondary inorganic aerosol in PM2. 5 during haze and fog in Hangzhou, China." Advances in Atmospheric Sciences 31(6): 1427-1434.
21. Jerrett, M., R. T. Burnett, R. Ma, C. A. Pope III, D. Krewski, K. B. Newbold, G. Thurston, Y. Shi, N. Finkelstein and E. E. Calle (2005). "Spatial analysis of air pollution and mortality in Los Angeles." Epidemiology 16(6): 727-736.
22. Kirchstetter, T. W., T. Novakov and P. V. Hobbs (2004). "Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon." Journal of Geophysical Research: Atmospheres 109(D21).
23. Kittelson, D. B. (1998). "Engines and nanoparticles: a review." Journal of aerosol science 29(5-6): 575-588.
24. Kondo, Y., H. Matsui, N. Moteki, L. Sahu, N. Takegawa, M. Kajino, Y. Zhao, M. Cubison, J. Jimenez and S. Vay (2011). "Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008." Journal of Geophysical Research: Atmospheres 116(D8).
25. Kumar, P. (2011). "Footprints of airborne ultrafine particles on urban air quality and public health." Journal of Civil and Environmental Engineering 1(e101).
26. Kwon, S.-B., K. W. Lee, K. Saito, O. Shinozaki and T. Seto (2003). "Size-dependent volatility of diesel nanoparticles: Chassis dynamometer experiments." Environmental science & technology 37(9): 1794-1802.
27. Löndahl, J., A. Massling, E. Swietlicki, E. V. Bräuner, M. Ketzel, J. Pagels and S. Loft (2009). "Experimentally determined human respiratory tract deposition of airborne particles at a busy street." Environmental Science & Technology 43(13): 4659-4664.
28. Martinsson, J., H. Abdul Azeem, M. K. Sporre, R. Bergström, E. Ahlberg, E. Öström, A. Kristensson, E. Swietlicki and K. Eriksson Stenström (2017). "Carbonaceous aerosol source apportionment using the Aethalometer model–evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden." Atmospheric Chemistry and Physics 17(6): 4265-4281.
29. Martinsson, J., A. Eriksson, I. E. Nielsen, V. B. Malmborg, E. Ahlberg, C. Andersen, R. Lindgren, R. Nystrom, E. Nordin and W. Brune (2015). "Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol." Environmental science & technology 49(24): 14663-14671.
30. Massabò, D., L. Caponi, V. Bernardoni, M. Bove, P. Brotto, G. Calzolai, F. Cassola, M. Chiari, M. Fedi and P. Fermo (2015). "Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols." Atmospheric Environment 108: 1-12.
31. Moosmüller, H., R. Chakrabarty, K. Ehlers and W. Arnott (2011). "Absorption Ångström coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles." Atmospheric Chemistry and Physics 11(3): 1217-1225.
32. Mustajbegovic, J., E. Zuskin, E. N. Schachter, J. Kern, K. Vitale, Z. Ebling and M. Vrcic‐Keglevic (2000). "Respiratory findings in chemical workers exposed to low concentrations of organic and inorganic air pollutants." American journal of industrial medicine 38(4): 431-440.
33. Ning, Z., K. Chan, K. Wong, D. Westerdahl, G. Močnik, J. Zhou and C. Cheung (2013). "Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer." Atmospheric environment 80: 31-40.
34. Oberdürster, G. (2000). "Toxicology of ultrafine particles: in vivo studies." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 358(1775): 2719-2740.
35. Oberdörster, G., E. Oberdörster and J. Oberdörster (2005). "Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles." Environmental health perspectives 113(7): 823.
36. Organization, W. H. (2005). "WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Global Update 2005. Summary of risk assessment." Google Scholar.
37. Organization, W. H. (2014). "7 million premature deaths annually linked to air pollution." World Health Organization, Geneva, Switzerland.
38. Pant, P. and R. M. Harrison (2013). "Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review." Atmospheric Environment 77: 78-97.
39. Park, R. J., D. J. Jacob, N. Kumar and R. M. Yantosca (2006). "Regional visibility statistics in the United States: Natural and transboundary pollution influences, and implications for the Regional Haze Rule." Atmospheric Environment 40(28): 5405-5423.
40. Pirjola, L., P. Paasonen, D. Pfeiffer, T. Hussein, K. Hämeri, T. Koskentalo, A. Virtanen, T. Rönkkö, J. Keskinen and T. Pakkanen (2006). "Dispersion of particles and trace gases nearby a city highway: mobile laboratory measurements in Finland." Atmospheric environment 40(5): 867-879.
41. Pope III, C. A. (2007). "Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence." Inhalation toxicology 19(sup1): 33-38.
42. Pope III, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston (2002). "Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution." Jama 287(9): 1132-1141.
43. Pope III, C. A. and D. W. Dockery (2006). "Health effects of fine particulate air pollution: lines that connect." Journal of the air & waste management association 56(6): 709-742.
44. Ramanathan, V. and G. Carmichael (2008). "Global and regional climate changes due to black carbon." Nature geoscience 1(4): 221.
45. Reche, C., M. Viana, M. Brines, N. Pérez, D. Beddows, A. Alastuey and X. Querol (2015). "Determinants of aerosol lung-deposited surface area variation in an urban environment." Science of The Total Environment 517: 38-47.
46. Renn, O. and M. C. Roco (2006). "Nanotechnology and the need for risk governance." Journal of Nanoparticle Research 8(2): 153-191.
47. Rissler, J., E. Z. Nordin, A. C. Eriksson, P. T. Nilsson, M. Frosch, M. K. Sporre, A. Wierzbicka, B. Svenningsson, J. Löndahl and M. E. Messing (2014). "Effective density and mixing state of aerosol particles in a near-traffic urban environment." Environmental science & technology 48(11): 6300-6308.
48. Rotstayn, L. D., M. D. Keywood, B. W. Forgan, A. J. Gabric, I. E. Galbally, J. L. Gras, A. K. Luhar, G. H. McTainsh, R. M. Mitchell and S. A. Young (2009). "Possible impacts of anthropogenic and natural aerosols on Australian climate: a review." International Journal of Climatology 29(4): 461-479.
49. Rozman, K. K. and C. D. Klaassen (1996). "Absorption, distribution, and excretion of toxicants." Toxicology: The Basic Science of Poisons (Klaassen CD, Amdur MO, Doull J, eds). 5th ed. New York: McGraw-Hill: 91-109.
50. Sandradewi, J., A. Prévôt, E. Weingartner, R. Schmidhauser, M. Gysel and U. Baltensperger (2008). "A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer." Atmospheric Environment 42(1): 101-112.
51. Sandradewi, J., A. S. Prévôt, S. Szidat, N. Perron, M. R. Alfarra, V. A. Lanz, E. Weingartner and U. Baltensperger (2008). "Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter." Environmental science & technology 42(9): 3316-3323.
52. Schwartz, S. E. (1996). "The whitehouse effect—Shortwave radiative forcing of climate by anthropogenic aerosols: An overview." Journal of Aerosol Science 27(3): 359-382.
53. Schwarz, J., R. Gao, J. Spackman, L. Watts, D. Thomson, D. Fahey, T. Ryerson, J. Peischl, J. Holloway and M. Trainer (2008). "Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions." Geophysical Research Letters 35(13).
54. Schwarz, J., J. Spackman, D. Fahey, R. Gao, U. Lohmann, P. Stier, L. Watts, D. Thomson, D. Lack and L. Pfister (2008). "Coatings and their enhancement of black carbon light absorption in the tropical atmosphere." Journal of Geophysical Research: Atmospheres 113(D3).
55. Shi, J. P., A. Khan and R. M. Harrison (1999). "Measurements of ultrafine particle concentration and size distribution in the urban atmosphere." Science of the Total Environment 235(1-3): 51-64.
56. Siegmann, K., L. Scherrer and H. Siegmann (1998). "Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health." Journal of Molecular Structure: THEOCHEM 458(1-2): 191-201.
57. Sillanpää, M., A. Frey, R. Hillamo, A. Pennanen and R. Salonen (2005). "Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe." Atmospheric Chemistry and Physics 5(11): 2869-2879.
58. Stine, K. and T. Brown (1996). "Measuring toxicity and assessing risk." Principles of toxicology (Eds, Stine KE and Brown TM) CRC Lewis publishers, FL: 1-10.
59. Thorpe, A. and R. M. Harrison (2008). "Sources and properties of non-exhaust particulate matter from road traffic: a review." Science of the total environment 400(1-3): 270-282.
60. Tran, C., D. Buchanan, R. Cullen, A. Searl, A. Jones and K. Donaldson (2000). "Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance." Inhalation toxicology 12(12): 1113-1126.
61. Turpin, B. J., P. Saxena and E. Andrews (2000). "Measuring and simulating particulate organics in the atmosphere: problems and prospects." Atmospheric Environment 34(18): 2983-3013.
62. Valavanidis, A., K. Fiotakis and T. Vlachogianni (2008). "Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms." Journal of Environmental Science and Health, Part C 26(4): 339-362.
63. Viidanoja, J., M. Sillanpää, J. Laakia, V.-M. Kerminen, R. Hillamo, P. Aarnio and T. Koskentalo (2002). "Organic and black carbon in PM2. 5 and PM10: 1 year of data from an urban site in Helsinki, Finland." Atmospheric Environment 36(19): 3183-3193.
64. Vingarzan, R. and S.-M. Li (2006). "The Pacific 2001 air quality study—synthesis of findings and policy implications." Atmospheric Environment 40(15): 2637-2649.
65. Wang, Y., P. K. Hopke, O. V. Rattigan and Y. Zhu (2011). "Characterization of ambient black carbon and wood burning particles in two urban areas." Journal of Environmental Monitoring 13(7): 1919-1926.
66. Warren, S. G. and W. J. Wiscombe (1980). "A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols." Journal of the Atmospheric Sciences 37(12): 2734-2745.
67. Weichenthal, S. (2012). "Selected physiological effects of ultrafine particles in acute cardiovascular morbidity." Environmental research 115: 26-36.
69. Wiscombe, W. J. and S. G. Warren (1980). "A model for the spectral albedo of snow. I: Pure snow." Journal of the Atmospheric Sciences 37(12): 2712-2733.
70. Witschi, H. R. and J. A. Last (2001). "Toxic responses of the respiratory system." Casarett and Doull’s toxicology: the basic science of poisons. 6th ed. New York: McGraw-Hill Book Co: 515-534.
71. Wu, C.-f., T. V. Larson, S.-y. Wu, J. Williamson, H. H. Westberg and L.-J. S. Liu (2007). "Source apportionment of PM2. 5 and selected hazardous air pollutants in Seattle." Science of the total environment 386(1-3): 42-52.
72. Yin, Z., X. Ye, S. Jiang, Y. Tao, Y. Shi, X. Yang and J. Chen (2015). "Size-resolved effective density of urban aerosols in Shanghai." Atmospheric Environment 100: 133-140.
73. Zaveri, R. A., J. C. Barnard, R. C. Easter, N. Riemer and M. West (2010). "Particle‐resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume." Journal of Geophysical Research: Atmospheres 115(D17).
74. Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue and P. H. McMurry (2008). "Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing." Proceedings of the National Academy of Sciences 105(30): 10291-10296.
75. Zhu, Y., W. C. Hinds, S. Kim and C. Sioutas (2002). "Concentration and size distribution of ultrafine particles near a major highway." Journal of the air & waste management association 52(9): 1032-1042.
指導教授 蕭大智 江康鈺 審核日期 2018-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明