博碩士論文 105326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.204.171.108
姓名 吳浚瑋(Chun-Wei Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
(Evaluation on characteristics of antibacterial lightweight materials by water purification sludge and paper mill sludge calcined ash.)
相關論文
★ 大學生對綠建材認知與態度之研究★ 封閉鉛礦場對於鄰近居民健康及環境之影響研究 以泰國甘差那布里府之克里汐灣採礦場為例
★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究
★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究
★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究
★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 評估機械處理(MT)技術製備一般事業廢棄物固態衍生燃料之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-26以後開放)
摘要(中) 本研究應用高壓蒸氣技術,探討淨水污泥與漿紙污泥灰共同製備為抗菌輕質化材料之可行性,其中試驗條件分別包括控制蒸氣壓力0.9MPa、反應時間8小時,控制鈣矽比(0.33~1.51)及調濕養護(室溫25℃及濕度70%)14天等條件,探討輕質化材料之機械特性。此外,為進一步探討輕質化材料摻混或表面塗佈二氧化鈦對抗菌特性之影響,本研究嘗試以嗜松青黴菌(Penicillium funiculosum)作為污染菌種,評估材料在模擬日夜光暗循環(日夜各12小時)及濕度條件(白天:65%及夜晚:75%)培養28天,材料表面之青黴菌覆蓋面積多寡,以作為抗菌效果之評估量化指標。
輕質化材料試驗結果顯示,在控制鈣矽比1.51及調濕養護之條件下,材料特性除符合輕質化材料之體密度(1.00g/cm3)及視孔隙率為(60.44%)之要求外,具有最佳之抗壓強度,材料之抗壓強度可達41kg/cm2以上,符合相關高壓蒸氣養護輕質氣泡混凝土之產品規範。製備材料之主要晶相為鈣矽水合物(C-S-H)以及碳酸鈣(Calcite)。抗菌試驗結果顯示,經過28天之試驗後,相較於未塗佈與摻混之試體,不論二氧化鈦之噴灑量之多寡,皆顯示出光催化之抗菌效果。輕質化材料表面之Penicillium funiculosum覆蓋率,以未塗佈試體之20.96%與內摻混之21.82%最高,而塗佈二氧化鈦0.1%試體,具有最佳的抗菌效果,青黴菌覆蓋面積僅約3.34%。本研究以漿紙污泥煅燒灰與淨水污泥製備輕質化材料,於表面塗佈二氧化鈦後,可透過光催化特性抑制青黴菌(Penicillium funiculosum)生長,且效果較未塗佈與摻混二氧化鈦試體佳。整體而言,應用高壓蒸氣技術製備之抗菌輕質化材料,極具後續應用發展潛力。
摘要(英) This study investigates the characterization of antibacterial lightweight material manufactured by water purification sludge and paper mill calcined ash by autoclaving technique with controlling conditions under steam pressure 0.9 MPa, reaction time 8 hr, Ca/Si ratio ranged from 0.33 to 1.51, humidity control and curing 14 days (room temperature: 25℃and humidity: 70%). This research also investigates the antibacterial materials properties evaluated by the Penicillium funiculosum with controlled day-night cycle (12 hr each), humidity control (day:65% and night:75%), and culturing 28 days. The coverage of Penicillium funiculosum on the surface of the lightweight material is widely used as a quantitative indicator for evaluating the performance of the antibacterial materials properties.
In the case of Ca/Si ratio 1.51 and curing by humidity control, the experimental results indicated that the lightweight material has not only met the criteria of relevant autoclaving lightweight material with bulk density (1.00g/cm3) and apparent porosity (60.44%), but also has the good performance of compressive strength (higher than 41kg/cm2).The identified mainly crystal phases of the lightweight material are calcium silicon hydrate (C-S-H) and calcium carbonate (Calcite). According to the analysis results of 28 days antibacterial performance test, compared with the uncoated and titanium dioxide (TiO2) blended samples, the samples surface coating TiO2 has a good photocatalytic and antibacterial characteristics. In the case of uncoated and TiO2 blended samples, the coverage of Penicillium funiculosum on the surface of lightweight are 20.96% and 21.82%, respectively. The lightweight materials coating 0.1% TiO2 could perform the good antibacterial characteristics corresponding with lowest coverage of Penicillium funiculosum (approximately 3.34%). In this study, the prepared antibacterial lightweight materials could provide the good photocatalytic characteristics to inhibit the growth of Penicillium funiculosum. In summary, the prepared antibacterial lightweight materials have a good potential for applying the building and construction work in the future.
關鍵字(中) ★ 抗菌輕質化材料
★ 高壓蒸氣技術
★ 漿紙污泥
★ 淨水污泥
★ 二氧化鈦
關鍵字(英) ★ Antibacterial lightweight materials
★ autoclaving
★ paper mill sludge
★ water purification sludge
★ titanium dioxide (TiO2)
論文目次 摘要....i
Abstract....iii
誌謝......v
目錄.....vii
圖目錄......xi
表目錄.......xiii
第一章 前言 1
第二章 文獻回顧 5
2-1淨水污泥之處理現況 5
2-1-1淨水污泥之產量及處理現況 5
2-1-2淨水污泥之物化特性 6
2-2漿紙污泥之處理現況 8
2-2-1漿紙污泥及漿紙污泥灰產量及處理現況 8
2-2-2漿紙污泥及漿紙污泥灰之物化特性 9
2-3高壓蒸氣技術之原理機制與應用 15
2-3-1高壓蒸氣技術之原理 15
2-3-2操作條件及鈣矽比對材料之影響 17
2-3-3高壓蒸氣技術研究與應用 19
2-3-4國內廢棄物轉換為材料之相關研究 24
2-4奈米二氧化鈦原理機制與應用 26
2-4-1奈米二氧化鈦光催化原理機制 26
2-4-2二氧化鈦應用與研究 31
2-4-3塗層效果評估 36
2-4-4微生物生長之因素 37
第三章 研究材料與方法 39
3-1實驗材料 39
3-1-1淨水污泥 39
3-1-2漿紙污泥煅燒灰 39
3-1-3二氧化鈦 40
3-2實驗操作條件 40
3-2-1預先試驗 40
3-2-2調質試驗 41
3-2-3塗佈及摻混TiO2試驗 42
3-2-4抗菌試驗 44
3-3實驗方法與分析項目 47
第四章 結果與討論 53
4-1研究材料基本特性分析 53
4-1-1污泥之化學組成 53
4-1-2污泥之粒徑分析 55
4-1-3漿紙污泥熱重損失之分析結果 57
4-1-4淨水污泥之物種鑑定與微觀結構 58
4-2漿紙污泥原料煅燒特性分析 60
4-2-1 X射線繞射分析 60
4-2-2灼燒減量 61
4-2-3微觀結構 62
4-2-4比表面積分析 64
4-3抗菌輕質化之材料特性分析 65
4-3-1調質試驗分析結果 65
4-3-2材料之晶相物種鑑定 73
4-3-3材料之紅外線光譜(FTIR)分析結果 75
4-4輕質化材料之二氧化鈦塗層相容性與抗菌能力評估 77
4-4-1輕質化材料與塗層之相容性 77
4-4-2材料微觀結構 80
4-4-3輕質化材料抗菌分析結果 85
4-4-4塗佈與摻混抗菌效果比較 108
第五章 結論與建議 111
5-1結論 111
5-2建議 113
參考文獻 115
參考文獻 Ahmad, T., Ahmad, K., & Alam, M., 2016. Characterization of Water Treatment Plant′s Sludge and its Safe Disposal Options. Procedia Environmental Sciences, 35, 950-955.
Bergamonti, L., Bondioli, F., Alfieri, I., Lorenzi, A., Mattarozzi, M., Predieri, G., & Lottici, P. P., 2016. Photocatalytic self-cleaning TiO2 coatings on carbonatic stones. Applied Physics A, 122(2), 124.
Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P., & Bondioli, F., 2017. Enhanced self-cleaning properties of N-doped TiO2 coating for Cultural Heritage. Microchemical Journal, 133, 1-12.
bin Mohd Sani, M. S. H., bt Muftah, F., & Ab Rahman, M., 2011. Properties of Waste Paper Sludge Ash (WPSA) as cement replacement in mortar to support green technology material. Paper presented at the Sustainable Energy & Environment (ISESEE), 2011 3rd International Symposium & Exhibition in.
Cai, Z., Ma, X., Fang, S., Yu, Z., & Lin, Y., 2016. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Applied Thermal Engineering, 106, 938-943.
Calia, A., Lettieri, M., & Masieri, M., 2016. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Building and Environment, 110, 1-10.
Chaipanich, A., & Chindaprasirt, P., 2014. The properties and durability of autoclaved aerated concrete masonry blocks. Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability, 215.
Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L., & Cheeseman, C., 2009. Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of hazardous materials,171(1-3), 76-82.
Çiçek, T., & Çinçin, Y.. 2015. Use of fly ash in production of light-weight building bricks. Construction and Building Materials, 94, 521-527.
Colangiuli, D., Calia, A., & Bianco, N., 2015. Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Construction and Building Materials, 93, 189-196.
Coletti, C., Maritan, L., Cultrone, G., & Mazzoli, C., 2016. Use of industrial ceramic sludge in brick production: Effect on aesthetic quality and physical properties. Construction and Building Materials, 124, 219-227.
Doudart de la Grée, G. C. H., Yu, Q. L., & Brouwers, H. J. H.. 2018. Upgrading and Evaluation of Waste Paper Sludge Ash in Eco-Lightweight Cement Composites. Journal of Materials in Civil Engineering, 30(3), 04018021.
Escalante-Garcia, J., Mendoza, G., & Sharp, J., 1999. Indirect determination of the Ca/Si ratio of the CSH gel in Portland cements. Cement and Concrete Research, 29(12).
Fava, G., Ruello, M. L., & Corinaldesi, V., 2011. Paper Mill Sludge Ash as Supplementary Cementitious Material. Journal of Materials in Civil Engineering, 23(6), 772-776.
Galán-Arboledas, R. J., de Diego, J. Á., Dondi, M., & Bueno, S., 2017. Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials. Journal of Cleaner Production, 142, 1778-1788.
Gluth, G. J. G., Lehmann, C., Rübner, K., & Kühne, H.-C., 2014. Reaction products and strength development of wastepaper sludge ash and the influence of alkalis. Cement and Concrete Composites, 45, 82-88.
Goel, G., & Kalamdhad, A. S., 2017. An investigation on use of paper mill sludge in brick manufacturing. Construction and Building Materials, 148, 334-343.
Goffredo, G. B., Accoroni, S., Totti, C., Romagnoli, T., Valentini, L., & Munafò, P., 2017. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Building and Environment, 112, 209-222.
Goffredo, G. B., Terlizzi, V., & Munafo, P., 2017. Multifunctional TiO2-based hybrid coatings on limestone: Initial performances and durability over time. Journal of Building Engineering, 14, 134-149.
Graziani, L., Quagliarini, E., Bondioli, F., & D′Orazio, M., 2014. Durability of self-cleaning TiO 2 coatings on fired clay brick façades: effects of UV exposure and wet & dry cycles. Building and Environment, 71, 193-203.
Graziani, L., Quagliarini, E., & D’Orazio, M., 2016. The role of roughness and porosity on the self-cleaning and anti-biofouling efficiency of TiO2-Cu and TiO2-Ag nanocoatings applied on fired bricks. Construction and Building Materials, 129, 116-124.
Graziani, L., Quagliarini, E., & D’Orazio, M., 2016. TiO2-treated different fired brick surfaces for biofouling prevention: Experimental and modelling results. Ceramics International, 42(3), 4002-4010.
Grossi, C. M., Brimblecombe, P., Esbert, R. M., & Alonso, F. J., 2007. Color changes in architectural limestones from pollution and cleaning. Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 32(4), 320-331.
Guillitte, O., 1995. Bioreceptivity: a new concept for building ecology studies. Science of the total environment, 167(1-3), 215-220.
Guo, M.-Z., Maury-Ramirez, A., & Poon, C. S., 2016. Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. Journal of Cleaner Production, 112, 3583-3588.
Huang, C., Pan, J. R., & Liu, Y., 2005. Mixing Water Treatment Residual with Excavation Waste Soil in Brick and Artificial Aggregate Making. Journal of Environmental Engineering, 131(2), 272-277.
Jang, H.-s., Lim, Y.-T., Kang, J.-H., So, S.-y., & So, H.-s., 2018. Influence of calcination and cooling conditions on pozzolanic reactivity of paper mill sludge. Construction and Building Materials, 166, 257-270.
Kunchariyakun, K., Asavapisit, S., & Sombatsompop, K., 2015. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate.Cement and Concrete Composites, 55, 11-16.
Kunther, W., Ferreiro, S., & Skibsted, J., 2017. Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. Journal of Materials Chemistry A, 5(33), 17401-17412.
Kunther, W., Lothenbach, B., & Skibsted, J., 2015. Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement and Concrete Research, 69, 37-49.
Lettieri, M., Calia, A., Licciulli, A., Marquardt, A. E., & Phaneuf, R. J., 2017. Nanostructured TiO 2 for stone coating: Assessing compatibility with basic stone’s properties and photocatalytic effectiveness. Bulletin of Engineering Geology and the Environment, 76(1), 101-114.
Li, Z., Ohnuki, T., & Ikeda, K., 2016. Development of Paper Sludge Ash-Based Geopolymer and Application to Treatment of Hazardous Water Contaminated with Radioisotopes. Materials (Basel), 9(8).
MacMullen, J., Zhang, Z., Dhakal, H. N., Radulovic, J., Karabela, A., Tozzi, G., Herodotou, C., 2014. Silver nanoparticulate enhanced aqueous silane/siloxane exterior facade emulsions and their efficacy against algae and cyanobacteria biofouling. International Biodeterioration & Biodegradation, 93, 54-62.
Mahy, M., Van Eycken, L., & Oosterlinck, A,. 1994. Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Research & Application, 19(2), 105-121.
Maury-Ramirez, A., De Muynck, W., Stevens, R., Demeestere, K., & De Belie, N., 2013. Titanium dioxide based strategies to prevent algal fouling on cementitious materials. Cement and Concrete Composites, 36, 93-100.
McGuire, R. G., 1992. Reporting of objective color measurements. HortScience, 27(12), 1254-1255.
Melo, C. R., Angioletto, E., Riella, H. G., Peterson, M., Rocha, M. R., Melo, A. R., Strugale, S., 2011. Production of metakaolin from industrial cellulose waste. Journal of Thermal Analysis and Calorimetry, 109(3), 1341-1345.
Munafo, P., Goffredo, G. B., & Quagliarini, E., 2015. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Construction and Building Materials, 84, 201-218.
Narayanan, N., & Ramamurthy, K., 2000. Structure and properties of aerated concrete: a review. Cement and Concrete Composites, 22(5), 321-329.
Pehlivanlı, Z. O., Uzun, I., Yücel, Z. P., & Demir, İ., 2016. The effect of different fiber reinforcement on the thermal and mechanical properties of autoclaved aerated concrete. Construction and Building Materials, 112, 325-330.
Quagliarini, E., Bondioli, F., Goffredo, G. B., Cordoni, C., & Munafò, P., 2012. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone.Construction and Building Materials, 37, 51-57.
Radulovic, J., MacMullen, J., Zhang, Z., Dhakal, H. N., Hannant, S., Daniels, L., Bennett, N., 2013. Biofouling resistance and practical constraints of titanium dioxide nanoparticulate silane/siloxane exterior facade treatments. Building and Environment, 68, 150-158.
Razak, H. A., Naganathan, S., & Hamid, S. N., 2009. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material. J Hazard Mater, 172(2-3), 862-867.
Segui, P., Aubert, J. E., Husson, B., & Measson, M., 2012. Valorization of Wastepaper Sludge Ash as Main Component of Hydraulic Road Binder. Waste and Biomass Valorization, 4(2), 297-307.
Stefanidou, M., & Karozou, A., 2016. Testing the effectiveness of protective coatings on traditional bricks. Construction and Building Materials, 111, 482-487.
Sutcu, M., & Akkurt, S., 2009. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceramics International, 35(7), 2625-2631.
Sutcu, M., & Akkurt, S., 2010. Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics. Journal of the European Ceramic Society, 30(8), 1785-1793.
Thamaphat, K., Limsuwan, P., & Ngotawornchai, B., 2008. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.), 42(5), 357-361.
Tran, T. H., Govin, A., Guyonnet, R., Grosseau, P., Lors, C., Damidot, D., Ruot, B., 2013. Avrami′s law based kinetic modeling of colonization of mortar surface by alga Klebsormidium flaccidum. International Biodeterioration & Biodegradation, 79, 73-80.
Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., & Cheeseman, C. R., 2015. Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70, 9-20.
Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., & Chaipanich, A., 2012. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials & Design, 35, 434-439.
Yang, Y., Tomlinson, D., Kennedy, S., & Zhao, Y. Q., 2006. Dewatered alum sludge: a potential adsorbent for phosphorus removal. Water Science and Technology, 54(5), 207-213.
Zhao, Y., Zhang, Y., Chen, T., Chen, Y., & Bao, S., 2012. Preparation of high strength autoclaved bricks from hematite tailings. Construction and Building Materials, 28(1), 450-455.
王鯤生,曾重仁,鄭欽仁,邱英嘉,林月婷,下水污泥灰輕質發泡材之孔隙結構與熱傳特性研究,中華民國環境工程學會2002年廢棄物處理技術研討會,台中,2002。
王鯤生,胡趙原,蔡振球,張孟弘,下水污泥灰加壓成形對燒成輕質化微觀結構變化之探討,中華民國環境工程學會2002年廢棄物處理技術研討會,台中,2002。
行政院環境保護署,環境資源資料庫,重點事業廢棄物-一般污泥之處理方式,網址:https://erdb.epa.gov.tw/DataRepository/Other/LITTER_NORM_SLUDGE.aspx,網頁擷取日期:2019年6月。
江康鈺,葛家賢,童翔新,陳雅馨,節能型輕質化材料之實廠應用可行性評估,行政院環境保護署環保創新科技研發計畫,EPA-103-U1U4-04-003,2014。
江康鈺,葛家賢,童翔新,吳志超,節能型輕質化材料之製備技術開發與應用評估,行政院環境保護署環保創新科技研發計畫,EPA-102-U1U4-04-005,2013。
邱孔濱,張坤森,蘇蕙茹,朱怡儒,陳瑭恩,呂方瑜,MSWI飛灰製成水晶玻璃之循環經濟高值化研究,中華民國環境工程學會2017年廢棄物處理技術研討會,台北,2017。
林孟祺,焚化飛灰化學處理與合成沸石再利用,碩士論文,弘光科技大學環境工程研究所,台中,2014。
林凱隆,藍如穎,回收再利用太陽能電池產業之廢噴砂製備環境調適性海綿型多孔鋪裝材料之特性研發,中華民國環境工程學會2017年廢棄物處理技術研討會,台北,2017。
張坤森,胡智豪,郭致君,陳雅郁,王瀞儀,紡織污泥再利用製成混凝土及其物化性質分析之研究,中華民國環境工程學會2017年廢棄物處理技術研討會,台北,2017。
臧緯承,陳志成,工業廢水污泥再利用燒製磚材研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
臺灣自來水公司第三管理處,網頁資料,網址:https://www3.water.gov.tw/ch/10visit/visit_02.asp,網頁擷取日期2019年5月
戴肇寬,林居慶,江康鈺,應用高壓蒸氣技術製備抗菌輕質化材料及其特性評估研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
顏慧茹,江康鈺,簡光勵,輕質化材料之製備與特性研究,中華民國環境工程學會2009年廢棄物處理技術研討會,雲林,2009。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明