博碩士論文 105326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.217.182.45
姓名 李昀恩(Yun-En Lee)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以LaFeO3/Black-TiO2行光催化反應以去除甲苯及異丙醇之可行性探討
(Photocatalytic oxidation of toluene and isopropanol by LaFeO3/Black-TiO2)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 揮發性有機物(VOCs) 之來源非常廣泛,暴露於VOCs環境中會對人體健康及環境造成不利之影響,會產生如頭痛、噁心、頭暈、刺鼻及咳嗽等症狀,這些長存於生活環境中之VOCs,對人體及環境之危害不容忽視。本研究為利用溶膠凝膠法分別製備black-TiO2及LaFeO3 (LFO) perovskite光觸媒,並利用物理性混合以特定比例將LFO擔載於black-TiO2上,以製備LFO/black-TiO2。將自製之black-TiO2及LFO/black-TiO2與市售之TiO2進行甲苯及異丙醇之去除活性測試比較,並藉由XRD、EPR、UV-vis、XPS及PL等儀器針對三種觸媒進行物化特性之分析與比較,藉由操作參數了解最佳之操作參數。研究結果顯示black-TiO2以250W氙燈為光源於50 sccm的流率下,初始濃度為100 ppm之甲苯及異丙醇的轉化率分別達89% 及99%,且礦化率也分別達87%及96%,而LFO/black-TiO2及市售TiO2對甲苯之轉化率則分別為87%及43%;對異丙醇之轉化率則分別為90% 及60%,顯示black-TiO2有最好之光催化活性,後續實驗將TiO2、black-TiO2及LFO/black-TiO2作比較,並探討氧氣濃度、流量及水氣含量變化下,對甲苯及異丙醇轉化效率之影響,結果顯示三種觸媒對於參數變化之趨勢皆相同,氧氣含量上升轉化效率也隨之上升,因此氧氣含量與轉化效率呈正相關,而在流量及水氣含量變化方面,則隨參數增加而轉化效率隨之下降。整體而言,本研究結果顯示LFO/black-TiO2及black-TiO2可有效去除氣流中之甲苯及異丙醇,具有發展潛力。
摘要(英) Volatile organic compounds (VOCs) are important air pollutants emitted from industrial, domestic and natural sources. Toluene and isopropanol (IPA) are VOCs which are commonly used in industrial manufacture. Typical technologies including adsorption, absorption, and combustion have been employed to eliminate VOCs from gas streams. Recently, photocatalysis is regarded as a potential way for the removal of VOCs. TiO2 is the most common photocatalyst in the photocatalysis field and also the most likely to be applied in industrial scale, due to its non-toxicity, abundance and photo/chemical stability. However, TiO2 has some limits including it has fast recombination rate of electron-hole pair and only absorbs UV light. Therefore, in this study, removal of toluene and IPA were investigated using black-TiO2 catalyst. Black-TiO2 can absorb visible light and has more defects on the catalyst surface. In this study, we discuss the conversion rate of VOCs by black-TiO2. The results, indicate that 98% and 89% conversion rate can be achieved for IPA and toluene, respectively. As the oxygen content is increased, the conversion rate also increases. As flow rate and hydrogen concentrations are increased, the conversion rate decreases. The results indicate higher removal efficiencies can be achieved with black-TiO2 when compared with TiO2 and LFO/black-TiO2. Overall, the preliminary results indicate that black-TiO2 can enhance the performance of photocatalysis system for toluene and IPA removal.
關鍵字(中) ★ 揮發性有機物
★ 光催化
★ Perovskite-type光觸媒
★ Black-TiO2
★ 可見光
關鍵字(英)
論文目次 摘要 I
Abstract II
圖目錄 VI
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 揮發性有機物之簡介 3
2.1.1 揮發性有機物物種及定義 3
2.1.2 揮發性有機物之控制技術 4
2.2 實驗選定之揮發性汙染物之特性 6
2.2.1 甲苯之特性 6
2.2.2 異丙醇之特性 8
2.3 光觸媒 10
2.3.1 光觸媒介紹 10
2.3.2 可見光光觸媒 12
2.3.3 光觸媒去除VOCs之應用 21
2.3.4 不同參數對VOCs去除效率之影響 24
第三章 研究方法 29
3.1 實驗流程及架構 29
3.2 實驗系統架設 29
3.3 實驗流程 31
3.3.1 觸媒材料製備 31
3.3.2 光催化實驗 33
3.3.3 實驗分析 33
3.3.4 觸媒材料之物化特性分析 35
3.4 實驗結果計算 39
3.5 實驗設備及材料 40
3.5.1 實驗設備 40
3.5.2 實驗藥品與氣體 41
第四章 結果與討論 42
4.1 觸媒基本物化特性分析 42
4.1.1 XRD晶相分析 42
4.1.2 BET氮氣吸脫附分析 43
4.1.3 UV-Vis 分析 44
4.1.4 SEM及TEM分析 45
4.1.5 ESCA 特性分析 48
4.1.6 EPR 分析 51
4.1.7 螢光光譜分析 52
4.2 光催化參數測試 53
4.2.1 系統穩定性測試 53
4.2.2 三種光觸媒對甲苯及異丙醇降解效率之比較 56
4.2.3 水氣變化對甲苯及異丙醇降解效率之影響 58
4.2.4 流量變化對甲苯及異丙醇降解效率之影響 63
4.2.5 氧氣變化對甲苯及異丙醇降解效率之影響 67
4.2.6 甲苯及異丙醇之光催化能量效率 71
4.2.7 甲苯及異丙醇去除之產物分析 73
4.2.8 甲苯及異丙醇去除之反應途徑推估 76
4.2.9 三種觸媒之動力探討 79
第五章 結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 87
參考文獻 Abbas N., Hussaina M., Russo N., Saracco G., Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal. 175 (2011) 330– 340
Abazari R., Sanati S., Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol–OT: morphology, crystal structure, and their optical properties. Superlattices and Microstructures. 64 (2013) 148-157
Alonso-Telleza A., Massona R., Robertb D., Kellera N., Kellera V., Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. Journal of Photochemistry and Photobiology A: Chemistry. 250 (2012) 58– 65
An T., Chen J., Nie X., Li G., Zhang H., Liu X. and Zhao H., Synthesis of carbon nanotube?anatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene. ACS Applied Materials Interfaces. 4 (2012) 5988?5996.
Ao C.H., Lee S.C., Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Applied Catalysis B: Environmental. 44 (2003) 191–205
Arana J., Pena Alonso A., Dona Rodr?guez J.M., Colon G., Nav?o J. A., Pena J. P., FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Applied Catalysis B: Environmental. 89 (2009) 204–213
Berenjian A., Chan N. and Malmiri H. J., Volatile organic compounds removal methods: a review. American Journal of Biochemistry and Biotechnology. 8 (2012) 220-229
Bechec M. Le, Kinadjian N., Ollis D., Backov R., Lacombe S., Comparison of kinetics of acetone, heptane and toluene photocatalytic mineralization over TiO2 microfibers and QuartzelR mats. Applied Catalysis B: Environmental. 179 (2015) 78–87
Bouzaza A., Laplanche A., Photocatalytic degradation of toluene in the gas phase: Comparative study of some TiO2 supports. Journal of Photochemistry and Photobiology A: Chemistry 150 (2002) 207–212
Chang C. P., Chen J. N. and Lu M. C., Characteristics of photocatalytic oxidation of gaseous 2-propanol using thin-film TiO2 photocatalyst. Journal of Chemical Technology and Biotechnology. 79 (2004) 1293–1300
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 331 (2011) 746?750.
Chen B., Beach J. A., Maurya D., Moore R. B., Priya S., Fabrication of black hierarchical TiO2 nanostructures with enhanced photocatalytic activity. RSC Advances. 4 (2014) 29443–29449
Chen J., He Z., Li G., An T., Shi H., Li Y., Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Applied Catalysis B: Environmental. 15 (2017) 146-154
Cui M., Pan S., Tang Z., Chen X., Qiao X. and Xu Q., Physiochemical properties of n-n heterostructured TiO2/Mo-TiO2 composites and their photocatalytic degradation of gaseous toluene. Chemical Speciation & Bioavailability. 29 (2017) 60-69
Dahl M., Liu Y., Yin Y., Composite titanium dioxide nanomaterials. Chemical Reviews. 114 (2014) 9853?9889
Devi L. G., Kavitha R., A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Applied Catalysis B: Environmental. 140–141 (2013) 559–587
Dong F, Guo S, Wang H, Li X, Wu Z. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. The Journal of Physical Chemistry C. 115 (2011) 13285-13292.
Einaga H., Futamuras S., Ibusukit T., Complete oxidation of benzene in gas phase by platinized titania photocatalysts. Environmental Science & Technology. 35 (2001) 1880-1884
Erickson L., Photocatalytic oxidation of volatile organic compounds for indoor air applications. (2009)
Feng J., Liu T., Xu Y., Zhao J., He Y., Effects of PVA content on the synthesis of LaFeO3 via sol–gel route. Ceramics International. 37 (2011) 1203–1207
Fujii T., Matsusue I., Nakatsuka D., Nakanishi M., Takada J., Synthesis and anomalous magnetic properties of LaFeO3 nanoparticles by hot soap method. Materials Chemistry and Physics. 129 (2011) 805–809
Fujishima A., Rao T. N., Tryk D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1 (2000) 1–21
Garlisi C., Scandura G., Szlachetko J., Ahmadi S., Sa J., Palmisano G., E-beam evaporated TiO2 and Cu-TiO2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation. Applied Catalysis A: General. 526 (2016) 191–199
Gerin M., Siemiatycki J., Desy M. and Krewski D., Associations between several sites of cancer and occupational exposure to benzene, toluene, xylene, and styrene: Results of a case-control study in montreal. American Journal of Industrial Medicine. 34 (1998) 144–156
Hou L., Zhang M., Guan Z., Li Q., Yang J., Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Applied Surface Science. 428 (2018) 640–647
Irokawa Y., Morikawa T., Aoki K., Kosaka S., Ohwaki T. and Taga Y., Photodegradation of toluene over TiO2-xNx under visible light irradiation. Physical Chemistry Chemical Physics. 8 (2006) 1116–1121
Janssona I., Suareza S., Javier Garcia-Garcia F., Sanchez B., Zeolite–TiO2 hybrid composites for pollutant degradation in gas phase. Applied Catalysis B: Environmental. 178 (2015) 100–107
Jeong M. G., Park E. J., Seo H. O., Kim K. D., Kim Y. D., Lim D. C., Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Applied Surface Science. 271 (2013) 164–170
Jing L., Qu Y., Su H., Yao C., and Fu H., Synthesis of high-activity TiO2-based photocatalysts by compounding a small amount of porous nanosized LaFeO3 and the activity-enhanced mechanisms. The Journal of Physical Chemistry C. 115 (2011) 12375–12380
Jo W. K., Photocatalytic oxidation of low-level airborne 2-propanol and trichloroethylene over titania irradiated with bulb-type light-emitting diodes. Materials. 6 (2013) 265-278
Kapilashrami M., Zhang Y., Liu Y. S., Hagfeldt A., Guo J., Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chemical Reviews. 114 (2014) 9662?9707
Khan F. I., Ghoshal A. Kr., Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries. 13 (2000) 527–545
Kumar R. D., Thangappan R., Jayavel R., Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. Journal of Physics and Chemistry of Solids. 101(2017) 25-33
Li F.B., Li X.Z., Ao C.H., Lee S.C., Hou M.F., Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification. Chemosphere. 59 (2005) 787-800.
Li L., Zhang S., Yang Z., Berthold E. E. S., Chen W., Recent advances of sexible perovskite solar cells. Journal of Energy Chemistry. 27 (2018) 673-689
Liu J., Li Y., Ke J., Wang S., Wang L., Xiao H., Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Applied Catalysis B: Environmental. 224 (2018) 705-714
Lu Z., Yip C. T., Wang L., Huang H., Zhou L., Hydrogenated TiO2 Nanotube Arrays as High?Rate Anodes for Lithium?Ion Microbatteries. ChemPlusChem. 77 (2012) 991-1000
Luo Y. and Ollis D. F., Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis. 163 (1996) 1–11
Luo Z., Poyraz A. S., Kuo C. H., Miao R., Meng Y., Chen S. Y., Jiang T., Wenos C., and Suib S. L., Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chemistry of Materials. 27 (2014) 6-17Luu C. L., Nguyen Q. T., Ho S. T. , Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method. Advances in Natural Sciences: Nanoscience and Nanotechnology. 1 (2010)

Marc? G., Garc?a-Lo pez E., Palmisano L., Photo-assisted degradation of 2-propanol in gas–solid regime by using TiO2 impregnated with heteropolyacid H3PW12O40. Catalysis Today. 144 (2009) 42–47
Mamaghani A. H., Haghighat F., Lee C. S., Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental. 203 (2017) 247–269
Nakata K., Fujishimaa A., TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 13 (2012) 169– 189
Pelaez M., Nolan N. T., Pillai S. C., Seery M. K., Falaras P., Athanassios G. Kontos, Patrick S.M. Dunlop, Jeremy W.J. Hamilton, J.Anthony Byrne, Kevin O’Shea, Mohammad H. Entezari, Dionysios D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental. 125 (2012) 331– 349
Portela R., Jansson I., Suarez S., Villarroel M., Sanchez B., Avila P., Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chemical Engineering Journal. 310 (2017) 560-570
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W., Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews. 114 (2014) 9919?9986
Sharmin R. and Ray M. B., Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. Journal of the Air & Waste Management Association. 62 (2012) 1032–1039
Sitkiewitz S., Heller A., Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass. New Journal of Chemistry. 20 (1996) 233-241
Sleiman M., Conchon P., Ferronato C., Chovelon J. M., Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental. 86 (2009) 159–165
Song H., Li C., Lou Z., Ye Z., and Zhu L., Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustainable Chemistry and Engineering. 5 (2017) 8982?8987
Soltanabadi Y., Jourshabani M., Shariatinia Z., Synthesis of novel CuO/LaFeO3 nanocomposite photocatalysts with superior Fenton-like and visible light photocatalytic activities for degradation of aqueous organic contaminants. Separation and Purification Technology. 202 (2018) 227-241
Sun S., Ding J., Bao J., Gao C., Qi Z., Yang X., He B., Li C., Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Applied Surface Science. 258 (2012) 5031– 5037
Toro C., Jobson B.T., Haselbach L., Shen S., Chung S.H., Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmospheric Environment. 139 (2016) 37-45
Ullattil S. G., Narendranath S. B., Pillai S. C., Periyat P., Black TiO2 nanomaterials: A review of recent advances. Chemical Engineering Journal. 343 (2018) 708-736
Vajifdar K. J., Chen D. H., Gossage J. L., Li K., Ye X., Gadiyar G., Ardoin B., Photocatalytic oxidation of PCE and butyraldehyde over titania modified with perovskite optical crystal BaTiO3. Chemical Engineering and Technology. 30 (2007) 474–480
Vildozo D., Ferronato C., Sleiman M., Chovelon J. M., Photocatalytic treatment of indoor air: Optimization of 2-propanol removal using a response surface methodology (RSM). Applied Catalysis B: Environmental. 94 (2010) 303–310
Vildozo D., Portela R., Ferronato C., Chovelon J-M. Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels. Applied Catalysis B: Environmental. 107 (2011) 347-354.
Viinikainen T., Kouva S., Lehtonen J., Kanervo J., Toluene oxidation over ZrO2-based gasification gas clean-up catalysts: Part B. kinetic modeling. Applied Catalysis B: Environmental. 199 (2016) 45–54
Wang K. H., Tsai H. H., Hsieh Y. H., The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Applied Catalysis B: Environmental. 17 (1998) 313-320
Wang Z., Yang C., Lin T., Yin H., Chen P., Wan D., Xu F., H?Doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials. 23 (2013) 5444–5450
Wang Z., Yang C., Lin T., Yin H., Chen P., Wan D., Xu F., Huang F., Lin J., Xie X., Jiang M., Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy and Environmental Sciience. 6 (2013) 3007–3014
Wang H., Lin T., Zhu G., Yin H., Lu X., Li Y., Huang F., Colored titania nanocrystals and excellent photocatalysis for water cleanin. Catalysis Communication. 60 (2015) 55-59
Wu M. C., Chang I. C., Hsiao K. C., Huang W. K., Highly visible-light absorbing black TiO2 nanocrystals synthesized by sol–gel method and subsequent heat treatment in low partial pressure H2. Journal of the Taiwan Institute of Chemical Engineers. 63 (2016) 430-435.
Wu Y., Wang H., Tu W., Liu Y., Tan Y. Z., Yuan X., Chew J. W., Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. Journal of Hazardous Materials. 347 (2018) 412–422
Xiang S., Zhang Z., Gong C., Wu Z., Sun L., Ye C., Lin C., LaFeO3 nanoparticle-coupled TiO2 nanotube array composite with enhanced visible light photocatalytic activity. Materials Letters. 1 (2018) 1-4
Xu W., Raftery D., and Francisco J. S., Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR. The Journal of Phyical Chemistry B. 107 (2003) 4537-4544
Yan X., Xing Z., Cao Y., Hu M., Li Z., Wu X., Zhu Q., Yang S., Zhou W., In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental. 219 (2017) 572-579.
Zhou W., Li W., Wang J. Q., Qu Y., Yang Y., Xie Y., Zhang K., Wang L., Honggang Fu, and Dongyuan Zhao, Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. Journal of the American Chemical Society. 136 (2014) 9280?9283
Zhang K., Park J. H., Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters. 8 (2017) 199?207
指導教授 張木彬 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明