博碩士論文 105326027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.226.102.115
姓名 連婉茜(Wan-Chien Lien)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 污水處理廠逸散微粒之物理、化學及生物特性分析
(Physical, Chemical and Biological Characteristic of Particles Emitted from Urban Wastewater Treatment Plant)
相關論文
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-9-17以後開放)
摘要(中) 污水處理廠被觀察到可以藉由氣液交換的廢水處理程序釋放大量的生物氣膠和懸浮微粒到空氣中,而這些微粒可能包含著人體機會性病原體,或是藥物類新興污染物。有鑑於此,全面性的調查及表徵污水處理廠空氣環境中的氣膠微粒之物理、生物及化學特徵至關重要。故在本研究中,主要目的為表徵由污水處理廠生成之微粒在全粒徑尺度下的粒徑分以及生物氣膠的分布特徵。此外,紫外線氣動粒徑分析儀(UV-APS; 型號3314;TSI, USA)用於即時性的監測污水處理廠空氣環境中的活性生物氣膠。同時利用高流量採樣器(HV-RW; 型號 080130-1203; SIBATA, Japan)收集空氣樣品以分析新興污染物在污水處理廠的排放狀況,以及在曝氣池所生成的微粒中的分布情形。
位於台灣北部的污水處理廠被選為本次研究的調查對象。實驗設計了兩種不同的採樣模式,一種採樣模式為在距離曝氣池(AM)一公尺遠處進行量測;另一種模式為靠近曝氣池水面處(CAT)進行量測。基於數目濃度的情況下,全尺度的粒徑分布呈現單峰分布且由奈米級微粒所支配,其占整個粒徑分布約99%;而基於體積的情況下,分布則呈現雙峰,峰值分別落在0.5-0.7 μm 以及2-3 μm。針對UV-APS 所揭示的微粒生物特徵結果顯示,熒光信號的峰值位於3-4 μm 左右,這意味著大多數的熒光微粒可能是細菌群聚體或是真菌物種。另一項值得注意的是本研究在空氣和水的樣品中分析出了九種常見的新興污染物,包括全氟辛磺酸(PFOS)、苯并三唑(Benzotriazole)、甲苯基三唑(Tolyltriazole)、持續性糖衣錠(Pentoxifylline)、脫水紅黴素(Erythromycin-H2O)、克拉黴素(Clarithromycin)、K 他命(Ketamine)、甲基安非他命(Methamphetamine)以及全氟辛酸(PFOA)。而這些化學物質中以脫水紅黴素(191.45 pg/m3)和甲基安非他命(39.02 pg/m3)在空氣中含量最多,且主要存在於PM1.0 之中。
摘要(英) Urban wastewater treatment plants (UWTPs) could be an emission source of bioaerosols and particle matters into the air through the air-liquid exchange process and
bubble-jet-droplet mechanism. It poses the potential of spreading human opportunistic pathogen and pharmaceutical emerging pollutants in wastewater into the air. In view of the potentials of emission and exposure risks of airborne particles in UWTPs, there is a need to comprehensively characterize the physical, biological and chemical characteristics of particles emitted from UWTPs. The main objective of this study is to characterize the
wide-size-range particle size distribution (PSD) and the characteristics of bio-aerosols generated in a UWTP. In addition, the ultraviolet aerodynamic particle sizer (UV-APS; model 3314; TSI, USA) was used to detect viable bio-aerosols in real time. Meanwhile, the air samples were also collected by high-volume samplers (HV-RW; model 080130-1203; SIBATA, Japan) for investigating the occurrence and the distribution of emerging
pollutants on the particles emitted from the aeration tank.
The measurements were conducted at two sampling ports in a UWTP located in northern Taiwan. One is 1 meter away from aeration tank (AM), and the other is close to the water surface of the tank (CAT). On the number-based, the full particle size distribution exhibits a unimodal distribution and dominated by nanoparticles, which is
accounted for about 99% of the whole PSD. On the volume-based, the distribution exhibits dual peaks and the modes of particle size are located at 0.5-0.7 μm and 2-3 μm. For the results of the biological characteristics revealed by UV-APS, the peaks of the fluorescent signal were sitting around 2-3 μm, implying that the most of fluorescence particles may be bacteria aggregates or fungal species. In addition, the concentration of the bio-aerosols in the UWTPs may be underestimated by the traditional cultivating method. Moreover, pharmaceuticals and emerging pollutants can also be transferred into the air. Nine common emerging contaminants, including PFOS, Benzotriazole, Tolyltriazole, Pentoxifylline, Erythromycin-H2O, Clarithromycin, Ketamine, Methamphetamine, PFOA were analyzed and found in both air and water samples. Among them, the most abundant
chemicals in the air are Erythromycin-H2O (191.45 pg/m3) and Methamphetamine (39.02 pg/m3) and mainly reside on PM1.0.
關鍵字(中) ★ 奈米微粒
★ 生物氣膠
★ 污水處理廠
★ 紫外線氣動粒徑分析儀
★ 熒光訊號
★ 新興污染物
關鍵字(英) ★ Nanoparticles
★ Bio-aerosols
★ Urban wastewater treatment plant (UWTP)
★ Ultraviolet aerodynamic particle sizer (UV-APS)
★ Fluorescence
★ Emerging pollutant
論文目次 摘要 .................................................. i
Abstract ............................................. ii
致謝 ................................................. iv
Acknowledgements ...................................... v
Contents ............................................. vi
List of Figures ..................................... vii
List of Tables ..................................... viii
Chapter 1 Introduction ................................ 1
Chapter 2 Methodology ................................. 4
2.1 Measurements ...................................... 4
2.1.1 Scanning Mobility Particle Sizer ................ 4
2.1.2 Ultraviolet Aerodynamic Particle Sizer .......... 7
2.1.3 High-volume sampler ............................ 10
2.2 Study sites and sample measurement ............... 11
Chapter 3 Results and Discussion ..................... 14
3.1 Physical characteristics ......................... 14
3.2 Biological characteristics ....................... 18
3.3 Analysis of emerging contaminants. ............... 24
Chapter 4 Conclusion ................................. 28
Appendix ............................................. 30
References............................................ 36
參考文獻 1. Report, I.W.G., Intergovernmental Panel on Climate Change. 2007.
2. Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Policy and
regulatory aspects. Vol. 1. 2006.
3. Reuse, G.f.W., Technical Report EPA/600/R-12/618; U.S. Environmental Protection
Agency: Washington, DC. 2012.
4. Standards of Reclaimed Water Quality Technical Report SL368- 2006; Ministry of
Water Resources: Beijing. 2006.
5. Zhang, Y., et al., Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes
Spreading from WWTPs. Environmental Science & Technology, 2018. 52(1): p.
248-257.
6. Harms, G., et al., Real-Time PCR Quantification of Nitrifying Bacteria in a Municipal
Wastewater Treatment Plant. Environmental Science & Technology, 2003. 37(2): p.
343-351.
7. Holger Daims, J.L.N., Per H. Nielsen, Karl-Heinz Schleifer, and Michael Wagner, In
Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in
Wastewater Treatment Plants. Applied and Environmental Microbiology, 2001.
8. Sim, W.-J., et al., Occurrence and distribution of pharmaceuticals in wastewater
from households, livestock farms, hospitals and pharmaceutical manufactures.
Chemosphere, 2011. 82(2): p. 179-186.
9. Brown, K.D., et al., Occurrence of antibiotics in hospital, residential, and dairy
effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of The
Total Environment, 2006. 366(2): p. 772-783.
10. Kümmerer, K., Antibiotics in the aquatic environment – A review – Part I.
Chemosphere, 2009. 75(4): p. 417-434.
11. Knapp, C.W., et al., Seasonal Variations in Antibiotic Resistance Gene Transport in
the Almendares River, Havana, Cuba. Front. Microbiol., 2012. 3.
12. Caucci, S., et al., Seasonality of antibiotic prescriptions for outpatients and
resistance genes in sewers and wastewater treatment plant outflow. FEMS
Microbiol. Ecol., 2016. 92(5).
13. Munir, M., K. Wong, and I. Xagoraraki, Release of antibiotic resistant bacteria and
genes in the effluent and biosolids of five wastewater utilities in Michigan. Water
Res., 2011. 45(2): p. 681.
14. Lin, A.Y.-C. and Y.-T. Tsai, Occurrence of pharmaceuticals in Taiwan′s surface waters:
Impact of waste streams from hospitals and pharmaceutical production facilities.
Science of The Total Environment, 2009. 407(12): p. 3793-3802.
15. Pei, R., et al., Effect of river landscape on the sediment concentrations of antibiotics
and corresponding antibiotic resistance genes (ARG). Water Res., 2006. 40(12): p.
2427.
16. Pepper, I.L., J.P. Brooks, and C.P. Gerba, Antibiotic Resistant Bacteria in Municipal
Wastes: Is There Reason for Concern? Environmental Science & Technology, 2018.
52(7): p. 3949-3959.
17. Rizzo, L., et al., Urban wastewater treatment plants as hotspots for antibiotic
resistant bacteria and genes spread into the environment: a review. Sci. Total
Environ., 2013. 447: p. 345.
18. Czekalski, N., et al., Does Human Activity Impact the Natural Antibiotic Resistance
Background? Abundance of Antibiotic Resistance Genes in 21 Swiss Lakes. Environ.
Int., 2015. 81: p. 45.
19. Pruden, A., M. Arabi, and H.N. Storteboom, Correlation between Upstream Human
Activities and Riverine Antibiotic Resistance Genes. Environ. Sci. Technol., 2012.
46(21): p. 11541.
20. null, n., Standard Methods for the Examination of Water and Wastewater . 2010.
21. Novo, A. and C.M. Manaia, Factors influencing antibiotic resistance burden in
municipal wastewater treatment plants. Appl. Microbiol. Biotechnol., 2010. 87(3):
p. 1157.
22. Aga, S.K.D.S., Potential Ecological and Human Health Impacts of Antibiotics and
Antibiotic-Resistant Bacteria from Wastewater Treatment Plants. Toxicology and
Environmental Health, 2007. 10(8).
23. Haas, D., et al., Exposure to bioaerosol from sewage systems. Water, Air, Soil Pollut.,
2010. 207(1–4): p. 49.
24. Uhrbrand, K., A.C. Schultz, and A.M. Madsen, Exposure to Airborne Noroviruses and
Other Bioaerosol Components at a Wastewater Treatment Plant in Denmark. Food
Environ. Virol., 2011. 3(3–4): p. 130.
25. Niazi, S., et al., Assessment of bioaerosol contamination (bacteria and fungi) in the
largest urban wastewater treatment plant in the Middle East. Environ. Sci. Pollut.
Res., 2015. 22(20): p. 16014.
26. Li, J., et al., Bioaerosol emissions and detection of airborne antibiotic resistance
genes from a wastewater treatment plant. Atmospheric Environment, 2016. 124:
p. 404-412.
27. Bauer, H., et al., Bacteria and fungi in aerosols generated by two different types of
wastewater treatment plants. Water Research, 2002. 36(16): p. 3965-3970.
28. AH, W., Bursting bubbles and air pollution. . Sewage Ind Wastes: p. 1955;27:1189.
29. Keene, W.C., et al., Chemical and physical characteristics of nascent aerosols
produced by bursting bubbles at a model air-sea interface. J. Geophys. Res., 2007.
112(D21): p. D21202.
30. P., W., Chemistry of the natural atmosphere, Max-Planck-Institut f .ur Chemie, Mainz.
1988.
31. Haas, D., et al., Comparative investigation of airborne culturable microorganisms in
sewage treatment plants. Central European Journal of Public Health, 2002. 10(1–
2): p. 6.
32. Piqueras, P., et al., Real-Time Ultrafine Aerosol Measurements from Wastewater
Treatment Facilities. Environmental Science & Technology, 2016. 50(20): p. 11137-
11144.
33. Lin, K. and L.C. Marr, Aerosolization of Ebola Virus Surrogates in Wastewater
Systems. Environmental Science & Technology, 2017. 51(5): p. 2669-2675.
34. Li, L., M. Gao, and J. Liu, Distribution characterization of microbial aerosols emitted
from a wastewater treatment plant using the Orbal oxidation ditch process.
Process Biochemistry, 2011. 46(4): p. 910-915.
35. Gao, P., M. Munir, and I. Xagoraraki, Correlation of tetracycline and sulfonamide
antibiotics with corresponding resistance genes and resistant bacteria in a
conventional municipal wastewater treatment plant. Science of The Total
Environment, 2012. 421-422: p. 173-183.
36. Alexander, J., et al., Ozone treatment of conditioned wastewater selects antibiotic
resistance genes, opportunistic bacteria, and induce strong population shifts. Sci.
Total Environ., 2016. 559: p. 103.
37. Baym, M., L.K. Stone, and R. Kishony, Multidrug Evolutionary Strategies to Reverse
Antibiotic Resistance. Science, 2016. 351(6268): p. 40.
38. Tao, W.D., et al., High levels of antibiotic resistance genes and their correlations
with bacterial community and mobile genetic elements in pharmaceutical
wastewater treatment bioreactors. PLoS One, 2016. 11(6): p. e0156854.
39. Chee-Sanford, J.C., et al., Fate and transport of antibiotic residues and antibiotic
resistance genes following land application of manure waste. J. Environ. Qual.,
2009. 38: p. 1086.
40. Dennekamp, M., et al., Exposure to ultrafine particles and PM2. 5 in different microenvironments.
Ann. Occup. Hyg., 2002. 46(suppl 1): p. 412.
41. Lee, S.A., et al., Personal Exposure to Airborne Dust and Microorganisms in
Agricultural Environments. J. Occup. Environ. Hyg., 2006. 3(3): p. 118.
42. Mitloehner, F.M. and M.B. Schenker, Environmental Exposure and Health Effects
from Concentrated Animal Feeding Operations. Epidemiology, 2007. 18(3): p. 309.
43. Xue, J., et al., Endotoxins: The Critical Risk Factor in Reclaimed Water via Inhalation
Exposure. Environmental Science & Technology, 2016. 50(21): p. 11957-11964.
44. Harris, S.J., M. Cormican, and C. Cummins, Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to
human health – a review. Hum. Ecol. Risk Assess., 2012. 18: p. 767.
45. Zhang, J., et al., Inhibition of lipopolysaccharide induced acute inflammation in lung
by chlorination. J. Hazard. Mater., 2016. 303: p. 131.
46. Poole, J.A. and D.J. Romberger, Immunological and Inflammatory Responses to
Organic Dust in Agriculture. Curr. Opin. Allergy Clin. Immunol., 2012. 12(2): p. 126.
47. Jahne, M.A., et al., Emission and Dispersion of Bioaerosols from Dairy Manure
Application Sites: Human Health Risk Assessment. Environ. Sci. Technol., 2015.
49(16): p. 9842.
48. Korzeniewska, E., Emission of bacteria and fungi in the air from wastewater
treatment plants - a review. Front. Biosci., Scholar Ed., 2011. 3: p. 393.
49. Korzeniewska, E., et al., Determination of emitted airborne microorganisms from a
BIO-PAK wastewater treatment plant. Water Res., 2009. 43(11): p. 2841.
50. Huang, H., H.Y. Hu, and Q.Y. Wu, Review on Concentration of Endotoxin in Water
and its Removal Effects in Water Treatment Process. J. Occup. Environ. Hyg., 2013.
3(3): p. 273.
51. Douwes, J., et al., Bioaerosol Health Effects and Exposure Assessment: Progress and
Prospects. Ann. Occup. Hyg., 2003. 47(3): p. 187.
52. Brooks, J.P., et al., Cultivation and qPCR detection of pathogenic and antibioticresistant
bacterial establishment in naïve broiler houses. J. Environ. Qual., 2016. 45:
p. 958.
53. Towner, J.S., et al., Rapid diagnosis of Ebola hemorrhagic fever by reverse
transcription-PCR in an outbreak setting and assessment of patient viral load as a
predictor of outcome. Journal of Virology, 2004. 78(8): p. 4330.
54. Karra, S. and E. Katsivela, Microorganisms in bioaerosol emissions from
wastewater treatment plants during summer at a Mediterranean site. Water
Research, 2007. 41(6): p. 1355-1365.
55. Liu, J.W., Zhou, J.N., Ma, W.l, Research on the pollution characteristics of microbial
aerosol in municipal wastewater treatment plant in Beijing. Environ.Pollut. Control,
2013: p. 35, 1-3, 31.
56. Zieger, S.E., et al., Compact and Low-Cost Fluorescence Based Flow-Through
Analyzer for Early-Stage Classification of Potentially Toxic Algae and in Situ
Semiquantification. Environmental Science & Technology, 2018. 52(13): p. 7399-
7408.
57. Nasrabadi, A.M., et al., Investigation of live and dead status of airborne bacteria
using UVAPS with LIVE/DEAD® BacLight Kit. Journal of Aerosol Science, 2018. 115:
p. 181-189.
58. Agranovski, V. and Z.D. Ristovski, Real-time monitoring of viable bioaerosols:
capability of the UVAPS to predict the amount of individual microorganisms in
aerosol particles. Journal of Aerosol Science, 2005. 36(5): p. 665-676.
59. Agranovski, V., et al., Real-time measurement of bacterial aerosols with the UVAPS:
performance evaluation. Journal of Aerosol Science, 2003. 34(3): p. 301-317.
60. Agranovski, V., et al., Performance Evaluation of the UVAPS in Measuring Biological
Aerosols: Fluorescence Spectra from NAD(P)H Coenzymes and Riboflavin. Aerosol
Science and Technology, 2004. 38(4): p. 354-364.
61. Jung, J.H., J.E. Lee, and G.N. Bae, Real-time measurement of UV-inactivated
Escherichia coli bacterial particles by electrospray-assisted UVAPS spectrometry.
Science of The Total Environment, 2011. 409(17): p. 3249-3255.
62. Robinson, E.S., et al., Fluorescence calibration method for single-particle aerosol
fluorescence instruments. Atmos. Meas. Tech., 2017. 10(5): p. 1755-1768.
63. Brosseau, L.M., et al., Differences in Detected Fluorescence Among Several Bacterial
Species Measured with a Direct-Reading Particle Sizer and Fluorescence Detector.
Aerosol Science and Technology, 2000. 32(6): p. 545-558.
64. Ho, J., M. Spence, and P. Hairston, Measurement of biological aerosol with a
fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with
biological data. Aerobiologia, 1999. 15(4): p. 281-291.
65. Kaliszewski, M., et al., A new approach to UVAPS data analysis towards detection of
biological aerosol. Journal of Aerosol Science, 2013. 58: p. 148-157.
66. Tang, H.B., et al., Contribution of specific Pseudomonas aeruginosa virulence
factors to pathogenesis of pneumonia in a neonatal mouse model of infection.
Infection and Immunity, 1996. 64(1): p. 37-43.
67. Welfare, M.o.H.a., How much water should I drink every day? Liberty Times Net,
2016.
68. Sawka, M.N., S.N. Cheuvront, and R. Carter, Human Water Needs. Nutrition Reviews,
2005. 63(s1): p. S30-S39.
69. Harrad, S., et al., Preliminary Assessment of U.K. Human Dietary and Inhalation
Exposure to Polybrominated Diphenyl Ethers. Environmental Science &
Technology, 2004. 38(8): p. 2345-2350.
指導教授 蕭大智 江康鈺(Ta-Chih HSIAO Kung-Yuh Chiang) 審核日期 2018-9-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明