博碩士論文 105326602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.132.194
姓名 登阮寶罄(Dang-Nguyen Bao-Khanh)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 製備新型鎳基MCM-41催化劑應用於稻稈氣化提昇氫氣產量之研究
(Enhanced hydrogen production from rice straw gasification by using prepared nickel-based MCM-41 catalyst)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-14以後開放)
摘要(中) 本研究嘗試利用自行製備之新型鎳基MCM-41催化劑,探討應用於稻稈氣化提昇產能效率之可行性。研究過程先利用低功率微波消化法合成製備MCM-41,其中二氧化矽來源係從稻稈中萃取,萃取條件主要包括0.05-0.30 M檸檬酸及500-800oC燃燒條件。鎳基催化劑則以濕浸漬方法,將5-15 wt.%的鎳負載於MCM-41之表面,為進一步評估合成之MCM-41及鎳基MCM-41催化劑的效能,研究分別以X光繞射(XRD)、傅立葉轉換紅外光譜(FTIR)、高分辨率透射電子顯微鏡(HRTEM)、Brunauer-Emmett-Teller(BET)及N2吸附/脫附 (N2 adsorption/desorption) 等方法驗證 。催化氣化的反應試驗則是以流體化床反應器進行,控制條件分別包括當量比(ER)為0.2,氣化溫度為800oC。同時5-10 wt.%催化劑則是與矽砂混合後,共同作為砂床的材料。氣化反應產生的合成氣,以GC-FID/TCD進行分析,氣化反應後的催化劑,則以XRD及HRTEM進行相關特徵變化之分析。
實驗結果顯示,利用0.30 M檸檬酸萃取之二氧化矽,其純度可達95wt.%以上, 且在操作溫度600oC所製備的無定形二氧化矽,較適用於後續作為製備MCM-41之材料。研究同時得知隨著降低合成溫度及延長合成時間,可製備較佳BET表面積之材料。整體而言,基材最佳之BET表面積及孔體積分別為1304.71 m2/g和2.24 nm,均高於商業MCM-41之719.45 m2/g及2.02 nm。根據XRD分析結果顯示,試驗製備之樣品均表現出典型的中孔結構。FTIR分析結果可知,本研究合成之MCM-41與商業型態之MCM-41,均在1065 cm-1、804 cm-1、1640 cm-1及2981-3652 cm-1的寬帶處,出現相似的振動信號,可見本試驗已成功合成MCM-41催化劑。另根據N2吸附/脫附及HRTEM分析結果可知,試驗樣品均屬代表性之IV型等溫線及六邊形結構之催化劑。
稻稈催化氣化產能效率的分析結果顯示,未添加催化劑之試驗條件下,氫組成平均比例及合成氣熱值分别為2.86 vol.%及1.56 kJ/Nm3,同時氫組成比例隨鎳基催化劑添加比例增加而增加,最大氫氣組成比例及合成氣熱值分别約為7.78 vol.%及2.60 kJ/Nm3。此外,當催化劑添加比例由5wt.%增加到10wt.%時,氫氣組成平均比例由3.43 vol.%增加到7.35 vol.%。催化劑之鎳含量由5 wt%增加至10 wt%,其氫氣組成比例亦由6.00 vol.%增加到7.77 vol.%,此係鎳基催化劑提供更多的酸性活性反應位置,促使更多的焦油轉化為合成氣。此外,鎳基催化劑亦促進水氣轉移反應,增加氫氣及二氧化碳的產生。然而,當添加10wt.%含15 %Ni基催化劑之試驗結果顯示,氫氣組成比例稍降低為7.35 vol.%,推測係因稻稈中含鉀成分於氣化反應過程附著於催化劑表面,降低催化劑的反應活性。
整體而言,本研究自行製備的MCM-41已具有商業MCM-41之相似六邊形結構,同時具有更高之BET表面積和孔徑特性。同時研究並已成功開發合成的催化劑,並有效提升稻桿氣化反應過程合成氣的產量。
摘要(英) This research investigated the characteristics of prepared nickel-based MCM-41 (Mobile Composite Matter No. 41) and evaluated the performance of enhanced energy conversion efficiency in rice straw gasification amended with different ratio of nickel-based MCM-41 catalyst. The prepared MCM-41 was synthesized using low-power microwave digestion. Silica content was extracted from rice straw by using 0.05 - 0.30 M citric acid and 500 - 800oC operation temperature. Prepared 5 - 15 wt.% nickel-based catalyst was loaded on the MCM-41 surface using wet impregnation method. The synthesized MCM-41 and nickel-based MCM-41 catalysts were all characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), high-resolution transmission electron microscope (HRTEM), Brunauer-Emmett-Teller (BET) and N2 adsorption/desorption methods, respectively. The catalytic gasification was performed in a fluidized bed gasifier controlled at equivalence ratio (ER) 0.2 and 800oC operation temperature. For each run, 5-10 wt.% tested catalyst was mixed with silica sand as bed material. The resulted syngas was analyzed using gas chromatography equipped with flame ionization detector and thermal conductivity detector (GC-FID/TCD). After gasification reaction, the catalyst was separated from the bed material and characterized by using XRD and HRTEM analysis.
The experimental results indicated that extracted silica was obtained from 0.3 M citric acid extraction and approximately higher than 95 wt.%. The amorphous silica form obtained at 600oC was suitable for MCM-41 preparation. It was also found that the BET area was improved with decreasing the synthesis temperature and prolonging the synthesis time. The highest BET surface area and optimal pore volume of MCM-41 were 1304.71 m2/g and 2.24 nm, respectively. To compare with commercial type, prepared MCM-41 has higher BET surface area and pore volume than that of commercial MCM-41. According to XRD results, all the prepared samples demonstrated the typical peaks of mesoporous structure. The FTIR analysis confirmed that the synthesized MCM-41 exhibited similar vibration signals at 1065 cm-1, 804 cm-1, 1640 cm-1, and a broad-band from 2981-3652 cm-1, comparing with the commercial MCM-41. The representative type IV isotherm and hexagonal structure were observed in all samples based on the results of N2 adsorption/desorption and HRTEM analysis.
The rice straw gasification performance was evaluated under different catalyst condition. Without catalyst addition, the average hydrogen produced and syngas heating value were 2.86 vol.% and 1.56 kJ/Nm3, respectively. It was observed that the hydrogen composition enhanced with either nickel content or catalyst addition. The maximum hydrogen content and syngas calorific value were approximately 7.78 vol.% and 2.60 kJ/Nm3, respectively. In the case of catalyst addition increased from 5 wt.% to 10 wt.%, the average hydrogen yield increased from 3.43 vol.% to 7.35 vol.%. The nickel content was also shown a similar trend, the hydrogen composition increased from 6.00 vol.% to 7.77 vol.% with an increase in Ni content increasing from 5 wt.% to 10 wt.%. It could be explained that the tested catalyst provided more acidic active sites for converting more tar content into syngas. Meanwhile the nickel could facilitate the water-gas shift (WGS) reaction, thus, more hydrogen and carbon dioxide were produced in gasification. However, hydrogen composition was a slight decreased to 7.35 vol.% as 15 wt.% Ni-based and 10 wt.% catalyst addition. This is due to the biomass containing potassium species could deposit on the catalyst surface resulted in the catalyst activity reduction. The results were confirmed by the XRD and HR-TEM analysis.
In summary, the prepared MCM-41 has a higher BET surface area and pore diameter characteristics and also exhibited the similar hexagonal structure with commercial MCM-41. The synthesized Ni-based catalyst has been successfully developed for improving quality of syngas in rice straw gasification.
關鍵字(中) ★ 稻草
★ 氣化
★ 鎳基MCM-41
★ 氫氣
關鍵字(英) ★ rice straw
★ gasification
★ Ni/MCM-41
★ hydrogen
論文目次 Table of contents
Chinese abstract i
English abstract iii
Acknowledgement v
Table of contents vi
List of figures ix
List of tables xi
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2-1 Overview of rice straw 5
2-1-1 Availability 5
2-1-2 Chemical properties 6
2-1-3 Treatment processes 10
2-2 Principles of biomass gasification 10
2-2-1 Definition 10
2-2-2 Gasification stages 12
2-2-3 Gasification reactions 13
2-2-4 Gasification products 15
2-3 Catalyst effects on gasification performance 16
2-3-1 Alkali and alkaline earth metals (AAEMs) 16
2-3-2 Zeolite family 19
2-3-3 Transitional metal-based catalysts 22
2-4 Overview of MCM-41 support 28
2-4-1 Basic concepts 28
2-4-2 Synthesis condition effects on MCM-41 characteristics 30
2-5 Metal-based MCM-41 catalyst effects on gasification performance 38
Chapter 3 Materials and Methods 39
3-1 Biomass characterization 39
3-1-1 Proximate analysis 40
3-1-2 Ultimate analysis 41
3-1-3 Heating value 44
3-1-4 Metal concentrations 45
3-2 Catalyst preparation 47
3-2-1 Crystallinity determination 47
3-2-2 Silica extraction 47
3-2-3 MCM-41 support preparation 49
3-2-4 Ni-based MCM-41 catalyst preparation 51
3-3 Catalyst characterization 52
3-3-1 X-ray diffraction analyzer 52
3-3-2 Fourier-transformed infrared spectrum 53
3-3-3 High-resolution transmittance microscopy 53
3-3-4 Brunauer-Emmett-Teller 54
3-4 Gasification experiment 54
3-4-1 Fluidized bed reactor 54
3-4-2 Tar trapping device 55
3-4-3 Produced syngas analysis 57
3-4-4 Experiment procedure 57
3-5 Experiment calculations and evaluations 59
3-5-1 Thermal gravimetric/Different thermal gravimetric analysis 59
3-5-2 Retention time 61
3-5-3 Air supplied 62
3-5-4 Feedstock amount 63
3-5-5 Tar production 65
3-5-6 Syngas energy value 65
3-5-7 Experiment summary 67
Chapter 4 Results and Discussions 68
4-1 Basic properties of rice straw 68
4-2 Characteristics of silica derived from rice straw 70
4-2-1 Effect of combustion temperatures on silica content 70
4-2-2 Effect of operation temperatures on silica crystallinity 72
4-2-3 Citric acid concentration effects on silica content 74
4-3 MCM-41 and Ni/MCM-41 catalyst characteristics 77
4-3-1 XRD patterns 77
4-3-2 FTIR spectra 80
4-3-3 N2 adsorption/desorption analysis 84
4-3-4 HR-TEM images 90
4-3-5 Catalyst characteristic evaluation 94
4-4 Catalytic gasification 99
4-4-1 Gaseous products 99
4-4-2 Energy contents 114
4-4-3 Mass balance 119
4-4-4 Catalyst performance evaluation 123
4-4-5 Characteristics of the Ni/MCM-41 catalysts after gasification 128
Chapter 5 Conclusions and Recommendations 131
5-1 Conclusions 131
5-2 Recommendation 133
References 134
參考文獻 Reference

Abrokwah, R.Y., Deshmane, V.G., Kuila, D., 2016. Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. Journal of Molecular Catalysis A: Chemical 425, 10-20.
Ahmad, A.A., Zawawi, N.A., Kasim, F.H., Inayat, A., Khasri, A., 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews 53, 1333-1347.
Al-Fatesh, A.S., Atia, H., Abu-Dahrieh, J.K., Ibrahim, A.A., Eckelt, R., Armbruster, U., Abasaeed, A.E., Fakeeha, A.H., 2019. Hydrogen production from CH4 dry reforming over Sc promoted Ni / MCM-41. International Journal of Hydrogen Energy 44, 20770-20781.
Alauddin, Z.A.B.Z., Lahijani, P., Mohammadi, M., Mohamed, A.R., 2010. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews 14, 2852-2862.
Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., Okoh, O., 2016. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews 66, 775-801.
Asadullah, M., Fujimoto, K., Tomishige, K., 2001. Catalytic Performance of Rh/CeO2 in the Gasification of Cellulose to Synthesis Gas at Low Temperature. Industrial & Engineering Chemistry Research 40, 5894-5900.
Asadullah, M., Miyazawa, T., Ito, S.-i., Kunimori, K., Tomishige, K., 2003. Demonstration of real biomass gasification drastically promoted by effective catalyst. Applied Catalysis A: General 246, 103-116.
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 114, 10834-10843.
Bermudez, J.M., Fidalgo, B., 2016. 15 - Production of bio-syngas and bio-hydrogen via gasification, in: Luque, R., Lin, C.S.K., Wilson, K., Clark, J. (Eds.), Handbook of Biofuels Production (Second Edition). Woodhead Publishing, pp. 431-494.
Bharath, M., Raghavan, V., Prasad, B.V.S.S.S., Chakravarthy, S.R., 2018. Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor. Applied Thermal Engineering 137, 608-615.
Bhattacharyya, S., Lelong, G., Saboungi, M.L., 2006. Recent progress in the synthesis and selected applications of MCM-41: a short review. Journal of Experimental Nanoscience 1, 375-395.
Braga, R.M., Barros, J.M.F., Melo, D.M.A., Melo, M.A.F., de M. Aquino, F., de O. Freitas, J.C., Santiago, R.C., 2013. Kinetic study of template removal of MCM-41 derived from rice husk ash. Journal of Thermal Analysis and Calorimetry 111, 1013-1018.
Broer, R.L.B.a.K., 2011. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. John Wiley & Sons.
C. T. Kresge, M.E.L., W. J. Roth, J. C. Vartuli, J. S. Beck, 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Letters To Nature 359, 3.
Cakiryilmaz, N., Arbag, H., Oktar, N., Dogu, G., Dogu, T., 2019. Catalytic performances of Ni and Cu impregnated MCM-41 and Zr-MCM-41 for hydrogen production through steam reforming of acetic acid. Catalysis Today 323, 191-199.
Carraro, P., Elías, V., Blanco, A.A.G., Sapag, K., Eimer, G., Oliva, M., 2014. Study of hydrogen adsorption properties on MCM-41 mesoporous materials modified with nickel. International Journal of Hydrogen Energy 39, 8749-8753.
Chan, F.L., Tanksale, A., 2014. Review of recent developments in Ni-based catalysts for biomass gasification. Renewable and Sustainable Energy Reviews 38, 428-438.
Chaudhari, S.T., Dalai, A.K., Bakhshi, N.N., 2003. Production of Hydrogen and/or Syngas (H2 + CO) via Steam Gasification of Biomass-Derived Chars. Energy & Fuels 17, 1062-1067.
Chen, C.-J., Hung, C.-I., Chen, W.-H., 2012. Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Applied Energy 100, 218-228.
Chen, W.-H., Chen, C.-J., Hung, C.-I., 2013. Taguchi approach for co-gasification optimization of torrefied biomass and coal. Bioresource Technology 144, 615-622.
Cheng, C.F., Cheng, H.H., Wu, L.L., Cheng, B.W., 2005. Synthesis and characterization of nanoscale aluminosilicate mesoporous materials by microwave irradiation, in: Sayari, A., Jaroniec, M. (Eds.), Studies in Surface Science and Catalysis. Elsevier, pp. 113-118.
Choi, J.S., Kim, D.J., Chang, S.H., Ahn, W.S., 2003. Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions. Applied Catalysis A: General 254, 225-237.
Cortazar, M., Lopez, G., Alvarez, J., Amutio, M., Bilbao, J., Olazar, M., 2019. Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed. Fuel 253, 1446-1456.
Debasish Das, C.-M.T., Soofin Cheng, 1999. Improvement of hydrothermal stability of MCM-41 mesoporous molecular sieve. Chemical Engineering Communications, 2.
Deekamwong, K., Wittayakun, J., 2017. Template removal by ion-exchange extraction from siliceous MCM-41 synthesized by microwave-assisted hydrothermal method. Microporous and Mesoporous Materials 239, 54-59.
Demirbas, A., 2009. Biofuels securing the planet’s future energy needs. Energy Conversion and Management 50, 2239-2249.
Di Blasi, C., 2009. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science 35, 121-140.
Dündar-Tekkaya, E., Yürüm, Y., 2015. Effect of loading bimetallic mixture of Ni and Pd on hydrogen storage capacity of MCM-41. International Journal of Hydrogen Energy 40, 7636-7643.
Dündar-Tekkaya, E., Yürüm, Y., 2016. Synthesis of palladium incorporated MCM-41 via microwave irradiation and investigation of its hydrogen storage properties. International Journal of Hydrogen Energy 41, 9828-9833.
Ergün, A.N., Kocabaş, Z.Ö., Baysal, M., Yürüm, A., Yürüm, Y., 2013. SYNTHESIS OF MESOPOROUS MCM-41 MATERIALS WITH LOW-POWER MICROWAVE HEATING. Chemical Engineering Communications 200, 1057-1070.
Faba, L., Díaz, E., Ordóñez, S., 2015. Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey. Renewable and Sustainable Energy Reviews 51, 273-287.
Feuston, B.P., Higgins, J.B., 1994. Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation. The Journal of Physical Chemistry 98, 4459-4462.
Ghorbani, F., Habibollah, Y., Mehraban, Z., Çelik, M.S., Ghoreyshi, A.A., Anbia, M., 2013. Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. Journal of the Taiwan Institute of Chemical Engineers 44, 821-828.
Go, A.W., Conag, A.T., Igdon, R.M.B., Toledo, A.S., Malila, J.S., 2019. Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energy Strategy Reviews 23, 100-113.
Gómez-Barea, A., Leckner, B., 2010. Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science 36, 444-509.
Göransson, K., Söderlind, U., He, J., Zhang, W., 2011. Review of syngas production via biomass DFBGs. Renewable and Sustainable Energy Reviews 15, 482-492.
Grams, J., Niewiadomski, M., Ruppert, A.M., Kwapiński, W., 2015. Influence of Ni catalyst support on the product distribution of cellulose fast pyrolysis vapors upgrading. Journal of Analytical and Applied Pyrolysis 113, 557-563.
Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B., Ruppert, A.M., 2016. Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. International Journal of Hydrogen Energy 41, 8656-8667.
Guan, G., Kaewpanha, M., Hao, X., Abudula, A., 2016. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable and Sustainable Energy Reviews 58, 450-461.
Gucbilmez, Y., Dogu, T., Balci, S., 2005. Vanadium incorporated high surface area MCM-41 catalysts. Catalysis Today 100, 473-477.
Hu, X., Lu, G., 2010. Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid. Applied Catalysis B: Environmental 99, 289-297.
Idris, S.A., Davidson, C.M., McManamon, C., Morris, M.A., Anderson, P., Gibson, L.T., 2011. Large pore diameter MCM-41 and its application for lead removal from aqueous media. Journal of Hazardous Materials 185, 898-904.
Italiano, C., Bizkarra, K., Barrio, V.L., Cambra, J.F., Pino, L., Vita, A., 2019. Renewable hydrogen production via steam reforming of simulated bio-oil over Ni-based catalysts. International Journal of Hydrogen Energy 44, 14671-14682.
Jansang, B., Limtrakul, J., 2005. Adsorption of benzene on MCM-41-type material: A QM/MM study, in: Sayari, A., Jaroniec, M. (Eds.), Studies in Surface Science and Catalysis. Elsevier, pp. 625-630.
Jiang, L., Hu, S., Wang, Y., Su, S., Sun, L., Xu, B., He, L., Xiang, J., 2015. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. International Journal of Hydrogen Energy 40, 15460-15469.
Jiang, T., Tang, Y., Zhao, Q., Yin, H., 2008. Effect of Ni-doping on the pore structure of pure silica MCM-41 mesoporous molecular sieve under microwave irradiation. Colloids and Surfaces A-physicochemical and Engineering Aspects - COLLOID SURFACE A 315, 299-303.
Jin, F., Sun, H., Wu, C., Ling, H., Jiang, Y., Williams, P.T., Huang, J., 2018. Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass. Catalysis Today 309, 2-10.
Kaewluan, S., Pipatmanomai, S., 2011. Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed. Fuel Processing Technology 92, 671-677.
Karl, J., Pröll, T., 2018. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renewable and Sustainable Energy Reviews 98, 64-78.
Karnjanakom, S., Guan, G., Asep, B., Du, X., Hao, X., Samart, C., Abudula, A., 2015. Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41. Energy Conversion and Management 98, 359-368.
Kim, Y.D., Yang, C.W., Kim, B.J., Kim, K.S., Lee, J.W., Moon, J.H., Yang, W., Yu, T.U., Lee, U.D., 2013. Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy 112, 414-420.
Kleestorfer, K., Vinek, H., Jentys, A., 2001. Structure simulation of MCM-41 type materials. Journal of Molecular Catalysis A: Chemical 166, 53-57.
Klose, W., Wölki, M., 2005. On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam. Fuel 84, 885-892.
Komatsu, T., Kishi, T., Gorai, T., 2008. Preparation and catalytic properties of uniform particles of Ni3Ge intermetallic compound formed inside the mesopores of MCM-41. Journal of Catalysis 259, 174-182.
Kong, M., Fei, J., Wang, S., Lu, W., Zheng, X., 2011. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification. Bioresource Technology 102, 2004-2008.
Kuba, M., Hofbauer, H., 2018. Experimental parametric study on product gas and tar composition in dual fluid bed gasification of woody biomass. Biomass and Bioenergy 115, 35-44.
Kuo, J.-H., Lin, C.-L., Chang, T.-J., Weng, W.-C., Liu, J., 2016. Impact of using calcium oxide as a bed material on hydrogen production in two-stage fluidized bed gasification. International Journal of Hydrogen Energy 41, 17283-17289.
La Villetta, M., Costa, M., Massarotti, N., 2017. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews 74, 71-88.
Lan, W., Chen, G., Zhu, X., Wang, X., Wang, X., Xu, B., 2019. Research on the characteristics of biomass gasification in a fluidized bed. Journal of the Energy Institute 92, 613-620.
Lee, C.-K., Liu, S.-S., Juang, L.-C., Wang, C.-C., Lin, K.-S., Lyu, M.-D., 2007. Application of MCM-41 for dyes removal from wastewater. Journal of Hazardous Materials 147, 997-1005.
Li, D., Tamura, M., Nakagawa, Y., Tomishige, K., 2015. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass. Bioresource Technology 178, 53-64.
Li, S., Guo, L., 2019. Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical water gasification of biomass. International Journal of Hydrogen Energy 44, 15842-15852.
Liu, C., Huang, Y., Niu, M., Pei, H., Liu, L., Wang, Y., Dong, L., Xu, L., 2018a. Influences of equivalence ratio, oxygen concentration and fluidization velocity on the characteristics of oxygen-enriched gasification products from biomass in a pilot-scale fluidized bed. International Journal of Hydrogen Energy 43, 14214-14225.
Liu, L., Huang, Y., Cao, J., Liu, C., Dong, L., Xu, L., Zha, J., 2018b. Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier. Science of The Total Environment 626, 423-433.
Long, J., Song, H., Jun, X., Sheng, S., Lun-shi, S., Kai, X., Yao, Y., 2012. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Bioresource Technology 116, 278-284.
Lv, P., Yuan, Z., Wu, C., Ma, L., Chen, Y., Tsubaki, N., 2007. Bio-syngas production from biomass catalytic gasification. Energy Conversion and Management 48, 1132-1139.
Makwana, J.P., Pandey, J., Mishra, G., 2019. Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG). Renewable Energy 130, 943-951.
Misran, H., Singh, R., Begum, S., Yarmo, M.A., 2007. Processing of mesoporous silica materials (MCM-41) from coal fly ash. Journal of Materials Processing Technology 186, 8-13.
Moghadam, R.A., Yusup, S., Uemura, Y., Chin, B.L.F., Lam, H.L., Al Shoaibi, A., 2014. Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. Energy 75, 40-44.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 25, 10-25.
Motta, I.L., Miranda, N.T., Maciel Filho, R., Wolf Maciel, M.R., 2018. Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews 94, 998-1023.
Navas-Anguita, Z., García-Gusano, D., Iribarren, D., 2019. A review of techno-economic data for road transportation fuels. Renewable and Sustainable Energy Reviews 112, 11-26.
Ng, E.-P., Goh, J.-Y., Ling, T.C., Mukti, R.R., 2013. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor. Nanoscale Research Letters 8, 120.
Ngoc Lan Thao, N.T., Chiang, K.-Y., Wan, H.-P., Hung, W.-C., Liu, C.-F., 2019. Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system. International Journal of Hydrogen Energy 44, 3363-3372.
Niaz, S., Manzoor, T., Pandith, A.H., 2015. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews 50, 457-469.
Nishikawa, J., Nakamura, K., Asadullah, M., Miyazawa, T., Kunimori, K., Tomishige, K., 2008. Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catalysis Today 131, 146-155.
Palace Carvalho, A.J., Ferreira, T., Estêvão Candeias, A.J., Prates Ramalho, J.P., 2005. Molecular simulations of nitrogen adsorption in pure silica MCM-41 materials. Journal of Molecular Structure: THEOCHEM 729, 65-69.
Panigrahi, S., Dalai, A.K., Chaudhari, S.T., Bakhshi, N.N., 2003. Synthesis Gas Production from Steam Gasification of Biomass-Derived Oil. Energy & Fuels 17, 637-642.
Park, S.-J., Lee, S.-Y., 2010. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. Journal of Colloid and Interface Science 346, 194-198.
Park, S.E., Kim, D.S., Chang, J.S., Kim, W.Y., 1998. Synthesis of MCM-41 using microwave heating with ethylene glycol. Catalysis Today 44, 301-308.
Prasanth, K.P., Raj, M.C., Bajaj, H.C., Kim, T.H., Jasra, R.V., 2010. Hydrogen sorption in transition metal modified mesoporous materials. International Journal of Hydrogen Energy 35, 2351-2360.
Puig-Arnavat, M., Bruno, J.C., Coronas, A., 2012. Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions. Energy & Fuels 26, 1385-1394.
Purushothaman, M., Pugazhenthi, G., 2010. Investigation of equilibrium and kinetic parameters of methylene blue adsorption onto MCM-41. Korean Journal of Chemical Engineering 27, 1184-1191.
Puthiyamadam, A., Adarsh, V.P., Mallapureddy, K.K., Mathew, A., Kumar, J., Yenumala, S.R., Bhaskar, T., Ummalyama, S.B., Sahoo, D., Sukumaran, R.K., 2019. Evaluation of a wet processing strategy for mixed phumdi biomass conversion to bioethanol. Bioresource Technology 289, 121633.
Ramachandran, S., Ha, J.-H., Kim, D.K., 2007. Hydrogen storage characteristics of metal oxide doped Al–MCM-41 mesoporous materials. Catalysis Communications 8, 1934-1938.
Ryczkowski, R., Jędrzejczyk, M., Michalkiewicz, B., Słowik, G., Kwapiński, W., Ruppert, A.M., Grams, J., 2018. Impact of the modification method of Ni/ZrO2 catalyst by alkali and alkaline earth metals on its activity in thermo-chemical conversion of cellulose. International Journal of Hydrogen Energy 43, 22303-22314.
Sadhwani, N., Adhikari, S., Eden, M.R., Wang, Z., Baker, R., 2016. Southern pines char gasification with CO2—Kinetics and effect of alkali and alkaline earth metals. Fuel Processing Technology 150, 64-70.
Safarian, S., Unnþórsson, R., Richter, C., 2019. A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews 110, 378-391.
Salmas, C.E., Stathopoulos, V.N., Pomonis, P.J., Rahiala, H., Rosenholm, J.B., Androutsopoulos, G.P., 2001. An investigation of the physical structure of MCM-41 novel mesoporous materials using a corrugated pore structure model. Applied Catalysis A: General 216, 23-39.
Samiran, N.A., Jaafar, M.N.M., Ng, J.-H., Lam, S.S., Chong, C.T., 2016. Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews 62, 1047-1062.
Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K., 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews 72, 363-384.
Santamaria, L., Lopez, G., Arregi, A., Amutio, M., Artetxe, M., Bilbao, J., Olazar, M., 2018. Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. Applied Catalysis B: Environmental 229, 105-113.
Schmidt, R., Hansen, E.W., Stoecker, M., Akporiaye, D., Ellestad, O.H., 1995. Pore Size Determination of MCM-51 Mesoporous Materials by means of 1H NMR Spectroscopy, N2 adsorption, and HREM. A Preliminary Study. Journal of the American Chemical Society 117, 4049-4056.
Snehesh, A.S., Mukunda, H.S., Mahapatra, S., Dasappa, S., 2017. Fischer-Tropsch route for the conversion of biomass to liquid fuels - Technical and economic analysis. Energy 130, 182-191.
Srinakruang, J., Sato, K., Vitidsant, T., Fujimoto, K., 2005. A highly efficient catalyst for tar gasification with steam. Catalysis Communications 6, 437-440.
Tan, R.S., Tuan Abdullah, T.A., Mahmud, S.A., Md Zin, R., Md Isa, K., 2019. Catalytic steam reforming of complex gasified biomass tar model toward hydrogen over dolomite promoted nickel catalysts. International Journal of Hydrogen Energy 44, 21303-21314.
Tang, J., Wang, J., 2016. Catalytic steam gasification of coal char with alkali carbonates: A study on their synergic effects with calcium hydroxide. Fuel Processing Technology 142, 34-41.
Tari, N.E., Tadjarodi, A., Tamnanloo, J., Fatemi, S., 2016. One pot microwave synthesis of MCM-41/Cu based MOF composite with improved CO2 adsorption and selectivity. Microporous and Mesoporous Materials 231, 154-162.
Teoh, F., Veksha, A., Chia, V.W.K., Udayanga, W.D.C., Binte Mohamed, D.K., Giannis, A., Lim, T.-T., Lisak, G., 2019. Nickel-based catalysts for steam reforming of naphthalene utilizing gasification slag from municipal solid waste as a support. Fuel 254, 115561.
Thakkar, M., Makwana, J.P., Mohanty, P., Shah, M., Singh, V., 2016. In bed catalytic tar reduction in the autothermal fluidized bed gasification of rice husk: Extraction of silica, energy and cost analysis. Industrial Crops and Products 87, 324-332.
Ud Din, Z., Zainal, Z.A., 2016. Biomass integrated gasification–SOFC systems: Technology overview. Renewable and Sustainable Energy Reviews 53, 1356-1376.
Umeda, J., Kondoh, K., 2010. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Industrial Crops and Products 32, 539-544.
Valderrama Rios, M.L., González, A.M., Lora, E.E.S., Almazán del Olmo, O.A., 2018. Reduction of tar generated during biomass gasification: A review. Biomass and Bioenergy 108, 345-370.
vamvuka, D., Karouki, E., Sfakiotakis, S., 2011. Gasification of waste biomass chars by carbon dioxide via thermogravimetry. Part I: Effect of mineral matter. Fuel 90, 1120-1127.
Vamvuka, D., Sfakiotakis, S., 2019. Thermal Behaviour and Reactivity of Swine Sludge and Olive By-Products During Co-pyrolysis and Co-combustion. Waste and Biomass Valorization 10, 1433-1442.
Wei, J., Gong, Y., Guo, Q., Chen, X., Ding, L., Yu, G., 2019. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals. Renewable Energy 131, 597-605.
Widjaya, E.R., Chen, G., Bowtell, L., Hills, C., 2018. Gasification of non-woody biomass: A literature review. Renewable and Sustainable Energy Reviews 89, 184-193.
Win, M.M., Asari, M., Hayakawa, R., Hosoda, H., Yano, J., Sakai, S.-i., 2019. Characteristics of gas from the fluidized bed gasification of refuse paper and plastic fuel (RPF) and wood biomass. Waste Management 87, 173-182.
Wu, M., Shi, L., Lim, T.-T., Veksha, A., Yu, F., Fan, H., Mi, J., 2018. Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas. Chemical Engineering Journal 353, 273-287.
Yang, G., Deng, Y., Wang, J., 2014. Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron ore tailing. Ceramics International 40, 7401-7406.
Ye, M., Tao, Y., Jin, F., Ling, H., Wu, C., Williams, P.T., Huang, J., 2018. Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catalysis Today 307, 154-161.
Yu, H., Wu, Z., Chen, G., 2018. Catalytic gasification characteristics of cellulose, hemicellulose and lignin. Renewable Energy 121, 559-567.
Yun, J.-H., Düren, T., Keil, F.J., Seaton, N.A., 2002. Adsorption of Methane, Ethane, and Their Binary Mixtures on MCM-41:  Experimental Evaluation of Methods for the Prediction of Adsorption Equilibrium. Langmuir 18, 2693-2701.
Zabaniotou, A., Mitsakis, P., Mertzis, D., Tsiakmakis, S., Manara, P., Samaras, Z., 2013. Bioenergy Technology: Gasification with Internal Combustion Engine Application. Energy Procedia 42, 745-753.
Zhang, J., Wang, M., Xu, S., Feng, Y., 2019. Hydrogen and methane mixture from biomass gasification coupled with catalytic tar reforming, methanation and adsorption enhanced reforming. Fuel Processing Technology 192, 147-153.
Zhang, X., Li, H., Liu, L., Bai, C., Wang, S., Zeng, J., Liu, X., Li, N., Zhang, G., 2018. Thermodynamic and economic analysis of biomass partial gasification process. Applied Thermal Engineering 129, 410-420.
Zhao, X.S., Lu, G.Q., Millar, G.J., 1996. Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research 35, 2075-2090.
Zhu, H.L., Zhang, Y.S., Materazzi, M., Aranda, G., Brett, D.J.L., Shearing, P.R., Manos, G., 2019. Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor. Fuel Processing Technology 190, 29-37.
Zhu, W., Wu, D., Li, X., Yu, J., Zhou, Y., Luo, Y., Ma, W., 2017. Synthesis of mesoporous silica materials (MCM-41) using silica fume as the silica source in a binary surfactant system assisted by post-hydrothermal treatment and its Pb2+ removal properties. The Canadian Journal of Chemical Engineering 95, 46-54.
Zubek, K., Czerski, G., Porada, S., 2018. Determination of optimal temperature and amount of catalysts based on alkali and alkaline earth metals for steam gasification process of bituminous coal. Thermochimica Acta 665, 60-69.
指導教授 江康鈺(Chiang Kung-Yuh) 審核日期 2020-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明